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Cancer cell plasticity during tumor  
progression, metastasis and response  
to therapy

Andrea Pérez-González1,3, Kevin Bévant1,3 & Cédric Blanpain    1,2 

Cell plasticity represents the ability of cells to be reprogrammed and to 
change their fate and identity, enabling homeostasis restoration and 
tissue regeneration following damage. Cell plasticity also contributes 
to pathological conditions, such as cancer, enabling cells to acquire new 
phenotypic and functional features by transiting across distinct cell states 
that contribute to tumor initiation, progression, metastasis and resistance 
to therapy. Here, we review the intrinsic and extrinsic mechanisms driving 
cell plasticity that promote tumor growth and proliferation as well as 
metastasis and drug tolerance. Finally, we discuss how cell plasticity could 
be exploited for anti-cancer therapy.

Although lineage specification and differentiation were long 
assumed to be unidirectional and irreversible, cell identity is cur-
rently recognized to be less rigid and more plastic than previously 
thought. Cell plasticity refers to the reprogramming of a cell toward 
a different fate in response to intrinsic or extrinsic factors1,2. Stem 
cells are plastic and have the capacity to self-renew and differenti-
ate into one or more cell lineages. The capacity of terminally dif-
ferentiated cells, such as fibroblasts, to be reprogrammed back 
to a pluripotent state shows that plasticity is not only a stem cell 
feature3,4. Cells can display plasticity through dedifferentiation 
(the reversion of a differentiated cell into an undifferentiated state 
within the same lineage), transdifferentiation (the conversion of a 
differentiated cell into another differentiated cell lineage, forming 
the basis of metaplasia)5 (Fig. 1a) and epithelial-to-mesenchymal 
transition (EMT), a process through which epithelial cells lose epi-
thelial characteristics, such as cell–cell junctions and polarity, and 
acquire a mesenchymal phenotype6.

Plasticity is essential to restore homeostasis after tissue damage, 
inflammation or senescence but can also contribute to tumorigenesis. 
During cancer progression, tumor cells can switch between cell states, 
a process primarily mediated by cell plasticity, to overcome selective 
pressures. Thus, cell plasticity largely fuels intratumor heterogene-
ity2,7,8 (as well as other sources such as DNA mutations9,10) and fitness, 
increasing the adaptability of tumor cells9, and contributes substan-
tially to tumor growth, metastasis and resistance to therapy.

Cell plasticity from homeostasis to tumorigenesis
Under physiological conditions in adult tissues, replenishment of dif-
ferentiated cells is ensured by multipotent or lineage-restricted stem 
cells. During wound healing and tissue regeneration, the latter can 
become plastic and expand their differentiation potential to replace 
other cell types and promote tissue repair8.

The intestinal epithelium is one of the most rapidly self-renewing 
tissues in mammals. Lgr5 marks the stem cells in the small intestine and 
colon11 that initiate the formation of crypt–villus self-organizing mouse 
organoids12. Intestinal crypts contain stem cells and transit-amplifying 
progenitors that can revert to a multipotent state under regenerative 
conditions13. Following Lgr5+ stem cell lineage ablation in mice, com-
mitted Bmi1-expressing cells can sustain homeostasis and replenish 
the pool of Lgr5+ stem cells14. Even more differentiated Alpi+ enterocyte 
progenitors can revert into Lgr5+ cells15. Following damage, committed 
precursors, such as secretory Dll1+ progenitors or Paneth cells, which 
are derived from Lgr5+ cells, can revert to the latter to replenish the 
stem cell pool and enable regeneration in mice16,17 (Fig. 1b).

In response to ionizing irradiation in the mouse intestine, YAP, the 
transcriptional activator of the Hippo pathway, promotes cell survival 
and a regenerative state required for tumor formation18. Colon regen-
eration following dextran sulfate sodium-induced colitis in mouse 
models activates the YAP–TAZ pathway to reprogram adult cells into a 
fetal-like state required for regeneration19. Parasitic helminth infection 
in mice suppresses the normal adult stem cell program and promotes 
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followed by a loss of Lgr5+ stem cells, thereby inducing Paneth cells to 
re-enter the cell cycle, acquire stem cell-like properties and contribute 
to tissue regeneration44. In the absence of inflammation, only intes-
tinal stem cells can induce tumor formation following Apc deletion. 
Co-deletion of Apc and Nfkbia which activates nuclear factor-κB (NF-κB) 
signaling, induces tumor formation by non-stem cells, showing that 
inflammatory signals can expand their tumor-initiating capacities45. In 
the mouse prostate gland, bacterial infection-induced inflammation 
promotes basal-to-luminal transdifferentiation and accelerates tumor 
initiation from basal cells34. Inflammation promotes cell plasticity in 
the pancreas by triggering acinar-to-ductal metaplasia46. When onco-
genic Kras is expressed in the presence of inflammation, metaplasia 
progresses to neoplasia47,48. Tissue regeneration in the presence of 
oncogenic Kras induces a unique chromatin state essential for tumor 
formation49. In Nr5a2+/− mice, a transcriptional switch from differen-
tiation to inflammation mediated by the AP-1 transcription factor  
(heterodimer composed of members of the Jun, Fos, ATF and JDP  
families) potentially explains why mutations around the human NR5A2 
gene promote pancreatic cancer50.

Tumor growth and proliferation
Tumors are composed by tumor cells of different states, accomplishing 
distinct functions. In this section, we discuss the extensively studied 
concept that tumor growth is sustained by cancer stem cells (CSCs).

CSCs and intrinsic regulation of proliferative states
CSCs express a stem cell-like program, are able to self-renew, sustain 
tumor growth and give rise to tumor cells with more restricted prolifera-
tive potential51. For example, colorectal CSCs express a gene signature 
reminiscent of normal intestinal stem cells52,53.

Whereas the xenotransplantation assay was the main method ini-
tially used to define CSCs, other approaches including lineage tracing, 
barcoding and lineage ablation were developed54 (Box 1 and Fig. 2a). 
These efforts showed that CSCs might not be a unique population but 
might instead represent several subpopulations. In a strict hierarchical 
organization, CSCs would give rise to subpopulations with more limited 
growth and differentiation potential, which could never revert to a CSC 
state55,56. However, evidence suggests that both CSCs and non-CSCs 
are plastic and might undergo phenotypic transitions under certain 
conditions (for example, therapy)54. For example, JARID1B (also known 
as KDM5B) expression is essential for continuous tumor growth in mela-
noma, with this phenotype being dynamic ( JARID1B− cells can become 
JARID1B+ cells and vice versa), suggesting that melanoma maintenance is 
a dynamic process mediated by a temporarily distinct subpopulation57. 
Differentiated colon cancer cells can revert to a CSC state to compensate 
for CSC loss and replenish the CSC population58,59. Genetic ablation of 
Lgr5+ CSCs in xenografted mouse colorectal cancer organoids restricts 
tumor growth without leading to regression. Tumors are then main-
tained by proliferative Lgr5− cells that replenish the CSC pool. Lgr5+ 
CSCs reappear when ablation is discontinued, leading to rapid tumor 
regrowth and indicating plasticity of more differentiated tumor cells 
following CSC ablation58. This finding is supported by patient-derived 
organoids. Following LGR5+ CSC ablation in xenografted human colo-
rectal cancer organoids, LGR5− cells replenish the LGR5+ CSC pool, 

a similar state20. The YAP1-dependent stem cell state has been associ-
ated with intestinal regeneration also by single-cell transcriptomics21. 
However, YAP has also been proposed to antagonize stemness during 
regeneration and act as a tumor suppressor in a mouse model of colo-
rectal cancer, possibly reflecting differences in the models employed22. 
In intestinal tumors, different populations have been identified resem-
bling Lgr5+ crypt–base columnar stem cells and Lgr5− regenerative stem 
cells expressing the fetal-like state, the respective abundance of which 
is regulated by intrinsic and extrinsic stimuli23.

The skin epidermis is composed of a pilosebaceous unit contain-
ing one hair follicle, its associated sebaceous gland and surrounding 
interfollicular epidermis8. During homeostasis, these different regions 
are maintained by their own pool of unipotent stem cells. During wound 
healing, different interfollicular epidermis stem and progenitor cells 
are recruited. Hair follicle and infundibulum stem cells migrate upward 
toward the interfollicular epidermis, are progressively reprogrammed 
into interfollicular epidermis stem cells, proliferate and contribute to 
skin repair8,24–26. The niche is important for this reprogramming: when 
mouse hair follicle stem cells are ablated, the empty niche can recruit 
more committed cells that revert to a stem cell-like state and stably 
replenish the stem cell pool27 (Fig. 1c).

Many glandular epithelia are composed of an inner luminal layer 
surrounded by an outer layer of myoepithelial and/or basal cells 
and develop from multipotent progenitors, which are progressively 
replaced by unipotent stem cells during adult tissue homeostasis8. 
When taken out of their natural environment in the absence of lumi-
nal cells, basal stem cells exhibit greater differentiation potential,  
giving rise to luminal cells, and generate functional mammary glands 
in mice28–30 (Fig. 1d). In the prostate, the existence of multipotent basal 
progenitors during postnatal development contrasts with the dis-
tinct pools of unipotent basal and luminal stem cells that mediate 
adult regeneration31–33. Luminal cell depletion by infection, E-cadherin 
knockout or genetic ablation can stimulate basal cell multipotency in 
glandular epithelia to replenish luminal cells34–36.

The ability of differentiated cells to revert to a stem cell-like state 
has major implications for tumorigenesis, with some oncogenic driv-
ers influencing plasticity during tumor initiation. Tumor suppressors 
such as TP53, RB1 and PTEN regulate developmental differentiation 
programs, and, when dysregulated, are associated with cancer5. In glan-
dular epithelia, unipotent basal and luminal stem cells can reacquire 
multipotency during tumor initiation. During mouse prostate tumor 
initiation, Pten deletion in basal cells promotes basal-to-luminal trans-
differentiation33,37 (Fig. 1e). Combined Trp53 and Rb1 loss-of-function 
mutations promote transdifferentiation from adenocarcinoma to 
neuroendocrine carcinoma in mouse prostate cancer38,39. Similarly, 
in the mouse mammary gland, breast cancer 1, early onset (BRCA1) 
inactivation in luminal progenitors leads to basal-like breast cancer, 
displaying heterogeneous expression of basal and luminal markers40. 
Oncogenic phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic 
subunit α (Pik3ca)H1047R expression induces multipotency in mammary 
gland lineage-restricted progenitors early during tumor initiation, 
setting the basis for intratumor heterogeneity41,42 (Fig. 1f).

Inflammation also regulates plasticity during regeneration and 
tumor initiation43. In the mouse small intestine, inflammation is 

Fig. 1 | Cell plasticity during homeostasis, regeneration and tumorigenesis. 
a, Stem cell differentiation, dedifferentiation and transdifferentiation occurring 
during cell plasticity. b, Lgr5+ intestinal stem cells self-renew and give rise to 
distinct intestinal lineages during homeostasis. Following stem cell lineage 
ablation, more committed progenitors can replenish the pool of stem cells, 
enabling epithelium regeneration. c, During homeostasis, the different 
epidermal compartments are sustained by distinct pools of unipotent stem cells, 
whereas, during wound healing, interfollicular epidermis stem cells contribute 
to skin repair, but also stem cells from the infundibulum and bulge can migrate 
upward, proliferate and be reprogrammed into interfollicular epidermis stem 

cells to contribute to regeneration. d, Under homeostatic conditions, basal and 
luminal cells in the mammary gland are unipotent. Following transplantation  
into the mammary fat pad, basal cells become multipotent and can give rise  
to luminal cells, enabling the generation of a functional mammary gland.  
e, Pten deletion in basal cells of the prostate gland promotes basal-to-luminal 
transdifferentiation and leads to tumor initiation. f, Pik3caH1047R expression in 
basal cells in the mammary gland leads to transdifferentiation into luminal cells, 
while its expression in luminal cells enables transdifferentiation into basal cells. 
Both basal and luminal cells expressing Pik3caH1047R can initiate tumorigenesis. 
IFE, interfollicular epidermis; SC, stem cell.
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mediating tumor relapse59 and suggesting that therapies targeting CSCs 
without preventing cell plasticity would be insufficient.

Clonal analysis combined with lineage tracing helped define the 
evolutionary dynamics of tumor growth, supporting, in some cases, a 

neutral drift of tumor evolution with the emergence of subclones. In 
mouse skin tumors, neutral competition of tumor cells in benign papil-
loma indicates that tumor growth is mediated by stochastic cell fate 
decisions, reminiscent of the clonal dynamics of normal stem cells60,61, 
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further suggesting that tumor heterogeneity can sometimes be 
explained by neutral drift rather than selective pressures62,63. Barcoding  
human glioblastoma cells shows that clonal dynamics during tumor 
growth are consistent with neutral evolution fueled by glioblastoma 
stem cells64. The notion that tumors can evolve through neutral drift 
implies that non-genetic cancer cell plasticity, rather than the sole 
process of genetic selection driven by selective pressures and gain of 
fitness, contributes to tumor growth and adaptation in some cancers.

Proliferative states have been reported by single-cell transcrip-
tomics in multiple cancer types, including mouse hepatocellular 
carcinoma65 and human breast cancer66, oligodendroglioma67, glioblas-
toma68,69 and lung cancer70, supporting the idea that tumors present 
proliferative states corresponding to cells that fuel tumor growth and 
likely reflect CSCs.

The CSC niche
The niche describes the microenvironment that sustains renewal and 
restricts premature differentiation of the stem cell pool71. The CSC niche 
is composed of heterogeneous and interacting cell populations and 
plays a major role in tumorigenesis, being essential for CSC regulation 
and promoting cancer cell plasticity (Fig. 2b)7. Lineage tracing in human 
colon cancer xenografts reveals that functional colorectal CSCs that 
give rise to dominant clones driving tumor expansion predominantly 
reside at the leading edge, close to cancer-associated fibroblasts (CAFs), 
which produce osteopontin, a factor that drives in situ clonogenicity72. 
Similarly, osteopontin arising from the vascular niche enhances CSC 
phenotypes and promotes tumor growth in mouse glioma73. In physi-
ological situations, stem cells or their differentiated progeny can par-
ticipate in niche formation74,75. In cancer, some tumor subpopulations 
can contribute to niche formation by a Wnt-dependent mechanism76.

The vascular niche refers to a specialized highly vascularized 
region composed of endothelial cells, pericytes, smooth muscle 
cells and immune cells, which creates a tumor-permissive microen-
vironment by influencing stemness, chemoresistance, invasion and 
metastasis77. Endothelial cells maintain stemness in CSCs by secret-
ing Wnt and Notch ligands and direct cell–cell interactions, as shown 
in human pancreatic ductal adenocarcinoma organoids and breast 
cancer mouse models78,79. Endothelial cells also increase invasiveness 
and proliferation through interleukin (IL)-8 (ref. 80) and IL-6 secretion 
in skin squamous cell carcinoma81 (Fig. 2b). In melanoma, the CSC pool 
localizes near the vasculature and endothelial cells stimulate tumor 
cell dedifferentiation, promoting growth through Notch 3-dependent 
cell–cell communication82. CSCs can induce vascular niche formation 
through vascular endothelial growth factor (VEGF) secretion, which 
subsequently regulates CSC renewal. VEGF secretion by CSCs promotes 
stemness in a cell-autonomous manner by an autocrine FLT1–NRP1 
signaling loop in mouse skin cancer83,84.

Apart from attracting and reprogramming endothelial cells dur-
ing tumorigenesis, CSCs can transdifferentiate into endothelial-like 
cells through vascular mimicry. Low oxygen levels within the tumor 
might promote stemness and the acquisition of endothelial features 
by CSCs85. Human glioblastoma CSCs cultured under endothelial 
conditions can differentiate into endothelial cells, with a substantial 
proportion of them arising from tumor cell differentiation follow-
ing xenotransplantation86. Transdifferentiation of tumor cells into 
endothelial cells has been shown in different human and murine can-
cers87,88, but its biological relevance remains unclear. In mouse breast 
cancer, vascular mimicry occurs in a tumor subpopulation secreting the 
inhibitors Serpine2 and SLP1 independently of endothelial-mediated 
neovascularization and is thus resistant to classical anti-angiogenic 
therapy85,89.

CAFs participate in CSC maintenance through cytokine secretion, 
including HGF, IGF2, TGFβ1, IL-6 and multiple CC chemokine ligands, 
and matrix remodeling through matrix metalloproteinase secretion 
and deposition of collagen and hyaluronan90,91 (Fig. 2b). Only specific 
fibroblast subsets can promote tumor stemness. In patients with breast 
and lung cancer, a fibroblast subpopulation expressing CD10 and G 
protein-coupled receptor C5L2 (GPR77) promotes stemness through 
IL-6 and IL-8 secretion, localizes near CSCs and is characterized by 
sustained NF-κB pathway activation, dependent on GPR77-induced 
p65 phosphorylation. Anti-GPR77 treatment reduces tumor growth 
in patient-derived xenografts92. In mouse hepatocellular carcinoma, 
HGF secretion by myofibroblasts regulates CSC plasticity through 
c-Met–FRA1–HEY1 signaling93. Additionally, HGF promotes resistance 
to BRAF inhibitors in mouse and human melanoma and lung cancer94,95. 
In colon cancer, HGF-producing myofibroblasts activate Wnt, stimulate 
CSC features at tumor edges and promote invasion, suggesting that 
CSC identity is partly regulated by the microenvironment96. Tumor 
cell-intrinsic Wnt signaling can regulate fibroblast plasticity and induce 
a myofibroblast phenotype that promotes tumor growth and inhibits 

Box 1

Functional strategies to identify 
CSCs
In classical xenotransplantation experiments, the capacity of a 
subpopulation to initiate a tumor following transplantation into 
immunodeficient mice over serial passages is interpreted as 
evidence of CSC presence54,271 (Fig. 2a). These studies identified 
CD34+CD38+ CSCs in acute myeloid leukemia272, CD44+CD24−/lo  
CSCs in breast cancer273, epithelial cell-adhesion molecule 
(EpCAM)hiCD44+ CSCs in colorectal cancer274 and CD133+ CSCs in 
brain275, pancreas276 and colon tumors277–279.

Xenotransplantation experiments enable the study of the 
tumor-propagating capacity of a specific tumor subpopulation 
in patient-derived samples. However, this technique has inherent 
technical and biological limitations, such as the lack of native 
architecture and stroma54,271. Xenotransplantation might not 
consider clonal cooperation or competition and can present 
clonal selection, leading to the formation of dominant clones 
with low frequency in the primary tumor, and different degrees 
of mouse immunodeficiency might lead to variable results280. 
Xenotransplantation reveals the potential of certain subpopulations 
to form tumors, which might not be representative of the fate of 
tumor cells within their native microenvironment.

Lineage tracing is the gold-standard method for defining cell 
fate in vivo and has been used to study CSCs within their native 
microenvironment and the hierarchical organization of tumor 
growth62,281 (Fig. 2a). Conventional lineage tracing was largely 
restricted to genetic mouse models, but CRISPR–Cas9 gene-editing 
technology enables us to perform lineage tracing in patient-derived 
tumor organoids, as shown by colorectal cancer studies59,282. 
Emerging lineage-tracing approaches combined with single-cell 
sequencing rely on naturally occurring molecular barcodes, such as 
somatic nuclear mutations and copy number variations to conduct 
longitudinal studies along disease progression283. Mitochondrial 
DNA mutations can also be used as phylogenetic barcodes to study 
clonal dynamics284.

Laser-induced or genetically induced lineage ablation is another 
powerful approach to assess the importance of a subpopulation 
for tumor growth, maintaining the natural microenvironment of the 
tumor54,271. In tumors maintained by CSCs, CSC ablation will result 
in tumor regression, such as it occurs when ablating Nes+ cells in 
mouse glioblastoma285, Sox2+ cells in mouse skin squamous cell 
carcinoma286, Dclk1+ cells in mouse intestinal tumors287 or LGR5+ 
cells in human colorectal cancer59 (Fig. 2a).
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Fig. 2 | Defining CSCs and their niche. a, Functional strategies to identify 
CSCs include (1) transplantation assays (tumor subpopulations isolated by 
fluorescence-activated cell sorting are transplanted into immunodeficient 
mice. If CSCs are grafted, a tumor will appear and will recapitulate tumor 
heterogeneity, while non-CSCs will be less efficient to propagate the tumor 
following transplantation), (2) lineage tracing of CSCs (which allows to follow 
their fate during tumor progression and to assess clonal expansion) and (3) 

lineage ablation (which allows the elimination of a specific subpopulation. If 
CSCs are eliminated, the remaining subpopulations will not be able to sustain 
tumor growth, and tumor regression will occur). b, Cross-talk between CSCs 
and their microenvironment is essential to sustain tumor growth. CSCs are 
supported by a niche composed of CAFs, endothelial cells and immune cells, 
which extrinsically promote tumor stemness. EC, endothelial cell; TAM, tumor-
associated macrophage.
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EMT97. However, CAFs are a heterogeneous population and specific sub-
types present antitumoral properties. In a murine model of metastatic 
colorectal cancer, myofibroblasts exert tumor-restraining functions 
through bone morphogenetic protein (BMP)4 secretion, which inhibits 
stemness in intestinal stem cells. Myofibroblast depletion results in an 
increased CSC pool98. CAF plasticity has been also suggested to occur 
in human solid tumors99.

Immune cells are key components of the CSC niche71. Depletion 
of tumor-associated macrophages or inflammatory monocytes by 
inhibiting the myeloid cell receptors CCR2 or CSF1R decreases CSC 
features in pancreatic cancer100. CSC and macrophage communica-
tion occurs through direct interaction, as in breast cancer, where 
the macrophage-created CSC niche fuels EMT, inducing ephrin type 
A receptor 4 (EphA4) expression in CSCs, which in turn promotes 
cytokine secretion and sustains CSC stemness101. Cytokine secre-
tion by macrophages (for example, TGFβ, IL-6, Wnt ligands and 
pleiotropin) promotes stemness in tumor cells, primarily through 
signal transducer and activator of transcription (STAT)3 signal-
ing102,103 (Fig. 2b).

CSC localization inside tumors is key for their functional prop-
erties. Gradients of cytokines, availability of nutrients and cell–cell 
interactions differ if cells are close to the tumor migration front, blood 
vessels or in the necrotic hypoxic tumor core. Hypoxic regions are 
associated with acidity and necrosis, promoting tumor aggressiveness, 
with hypoxia being an inducer of stemness56 through hypoxia-induced 
factors 1 and 2 (HIF1 and HIF2), which are expressed in acute and 
long-term hypoxia, respectively104. Transplantation of breast cancer 
cell lines in a hypoxic mouse model increases the CSC population within 
hypoxic regions, which remains stable across serial transplantation 
and is maintained by the phosphoinositide 3-kinase (PI3K)–AKT path-
way105. In human pancreatic cancer, hypoxia-mediated production of 
l-2-hydroxyglutarate through lactate dehydrogenase A (LDHA) activa-
tion results in histone H3 hypermethylation and increased stemness 
by altering transcription of differentiation genes and inducing CD133 
and SRY-box transcription factor 2 (SOX2)106.

Plasticity along the metastatic cascade
Metastasis occurs through a multistep cascade, which includes the 
detachment of cancer cells from the primary tumor, local invasion 
into the surrounding tissue, intravasation into the blood or lymphatic 
vessels, extravasation, colonization of a secondary organ and growth of 
a secondary tumor. Growing evidence indicates that only certain sub-
populations of tumor cells, termed metastasis-initiating cells (MICs), 
are able to form metastases107. In contrast to tumor initiation, which is 
linked to mutations in cancer drivers, no metastasis-specific mutations 
have been identified108,109, although certain mutations might predispose 
to metastasis110,111. MICs are highly plastic, displaying different degrees 
of stemness, EMT and metabolic plasticity along the entire metastatic 
cascade (Fig. 3).

Intrinsic regulation of cancer cell plasticity
Metastasis initiation. The importance of EMT for metastasis was first 
demonstrated by seminal work showing that Twist1 was essential for 
metastasis in breast cancer cell lines112. The deletion of genes encoding 
other EMT transcription factors also impairs metastasis, as shown with 
Zeb1 deletion in pancreatic cancer models113.

EMT can be triggered by different transcription factors, with 
SNAI1, SNAI2, Twist1, ZEB1 and ZEB2 being considered core EMT tran-
scription factors that can induce the classic EMT program and are often 
coexpressed. Their redundancy and compensatory mechanisms might 
explain why the loss of one is not always sufficient to block metasta-
sis. Nevertheless, these factors can have non-redundant functions 
involving stemness and survival, and, aside from these core factors, 
a growing number of factors can induce EMT, such as FOXC2, SOX4 
and PRRX1 (ref. 113).

EMT was long considered a binary switch, but recent studies have 
demonstrated that EMT tumor cells present intermediate, partial or 
hybrid states that can transit from one to another while coexpress-
ing epithelial and mesenchymal markers. In mouse skin squamous 
cell carcinoma and mammary tumors, distinct EMT subpopulations 
exhibit different plasticity and invasive and metastatic potential. Early 
hybrid EMT includes the most metastatic states, while late EMT states 
are the most invasive114,115. Early and late EMT are relatively stable in 
comparison to other intermediate states, which are highly plastic116,117. 
Single-cell transcriptomics has identified hybrid EMT states in mouse 
skin squamous cell carcinoma and mammary tumors114 and in human 
nasopharyngeal carcinoma118, glioblastoma68, melanoma119 and head 
and neck squamous cell carcinoma120. Hybrid EMT has been associated 
with poor patient outcome in 32 cancer types121. Partial EMT states are 
located at the tumor leading edge in human oral squamous cell carci-
noma, suggesting an association with local invasion120.

EMT promotes stemness, allowing MICs to give rise to secondary 
tumors122–125 (Fig. 3). Lineage tracing has identified MICs within pri-
mary tumors and tracked tumor cells undergoing partial (expressing 
N-cadherin) and complete (expressing vimentin) EMT in mammary 
tumors126,127. N-cadherin, but not vimentin, labels MICs, supporting 
the notion that partial EMT is required for metastasis initiation126,127. 
An inducible CRISPR–Cas9-based lineage reporter approach com-
bined with single-cell transcriptomics confirmed the high metastatic 
potential of hybrid EMT states in a pancreatic cancer mouse model128. In 
several human cancers, L1 cell-adhesion molecule (L1CAM) is expressed 
by MICs and enhances metastatic spreading, extravasation and out-
growth129. L1CAM+ MICs emerge after the loss of epithelial integrity in 
a subset of cells mimicking the intestinal repair program130,131.

During tumorigenesis, the metabolic phenotype of cancer cells 
can be modified depending on nutrient availability, proliferative 
rate and tumor mutational burden. The metastatic cascade imposes 
important adaptations for metastatic cells to overcome nutrient vari-
ations and oxidative stress132. MICs often present increased anaerobic 
glycolysis (also known as the Warburg effect)133. The dysregulation 
of oxidative phosphorylation is associated with poor prognosis and 
correlated with EMT in multiple cancers134. In human oral squamous cell 
carcinoma, tumor cells with low levels of mitochondrial tRNAMet with 
the m5C modification at position 34, which promotes translation of 
mitochondrial genes, are unable to transit from glycolysis to oxidative 
phosphorylation, displaying impaired metastatic capacity135. Lactate 
and pyruvate metabolism can induce signaling pathways that promote 
migration and invasion136. Moreover, a metabolic switch in the primary 
tumor can induce a pro-metastatic cancer cell phenotype. In breast 
cancer, downregulation of phosphoglycerate dehydrogenase and acti-
vation of the hexosamine–sialic acid pathway potentiates metastatic 
dissemination through a proliferative-to-invasive phenotypic switch137.

Fig. 3 | Cell plasticity along the metastatic cascade. Tumor cells can acquire 
metastasis-initiating properties through the induction of EMT by intrinsic and 
extrinsic stimuli. EMT allows MICs to detach from the primary tumor, and the 
vascular niche facilitates MIC intravasation into the bloodstream, where single 
or clustered CTCs exhibit high plasticity and hybrid EMT. Interaction of CTCs 
with platelets and macrophages can promote plasticity, while platelet coating 
protects CTCs from the shredding force. The secondary organ is prepared by 
the primary tumor through the secretion of extracellular vesicles and soluble 

factors, which create a permissive microenvironment. Colonizing the metastatic 
site involves reversion of tumor cells to the epithelial state in response to signals 
coming from the metastatic niche. Following seeding, tumor cells can enter 
dormancy, which confers upon them immune evasion traits and resistance to 
therapy, or proliferate and give rise to macroscopic metastases. CDH1, cadherin 
1; ECM, extracellular matrix; MSC, mesenchymal stem cell; TC, tumor cell; UPR, 
unfolded protein response.
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Whereas metastatic dissemination was considered a late event 
during tumor progression, increasing evidence suggests that it can 
occur relatively early during tumorigenesis138. In a breast cancer mouse 
model, metastatic spread occurs at the early stage of tumor formation, 

driven by progesterone and human epidermal growth factor receptor 
2 (HER2) signaling. First, progesterone signaling promotes migration 
and dissemination, and, at later stages, increased cell density down-
regulates the progesterone receptor, switching migration toward 
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proliferation139. Cell plasticity regulated by the transcription factor 
ZP281 induces a mesenchymal-like state that promotes early dissemina-
tion and dormancy in early metastatic lesions by preventing the switch 
to an epithelial-like proliferative state140.

Local invasion and dissemination of tumor cells. Tumor cells in a 
full EMT state invade their surrounding tissue as mesenchymal single 
cells, whereas hybrid EMT states promote collective migration, with 
tumor cells at the leading edge presenting a more pronounced EMT 
phenotype than that of follower cells141 (Fig. 3). Hybrid EMT cells migrat-
ing collectively are associated with plasticity, stemness, invasion and 
increased metastatic ability114,127. Next, tumor cells intravasate blood 
vessels as circulating tumor cells (CTCs), with some of these surviving 
to extravasate into a secondary organ, in which they will either prolifer-
ate to enable metastatic outgrowth or undergo dormancy142 (Fig. 3). 
Xenografts revealed MIC markers among human luminal breast cancer 
CTCs that give rise to bone, lung and liver metastases. MIC-containing 
CTC subpopulations express EpCAM, CD44, CD47 and Met143.

Whereas most CTCs are single cells in circulation, a less-prevalent 
fraction is shed and travels in clusters, showing increased metastatic 
potential and associating with poor outcomes144–146. Both single and 
clustered CTCs exhibit shifts in epithelial and mesenchymal marker 
expression, displaying plasticity during tumor progression. Whereas 
epithelial cells that lose adhesion-dependent survival signals and intra-
vasate into blood vessels normally undergo anoikis, EMT enables single 
tumor cells to change their fate toward a mesenchymal phenotype, in 
which adherence-independent survival signals prevent cell death144,147. 
Rare primary tumor cells simultaneously express mesenchymal and 
epithelial markers, whereas CTC clusters in patients with breast cancer 
are positive for mesenchymal markers and weakly positive for epithe-
lial markers, supporting a role of EMT in CTC dissemination148. CTCs 
detected in the blood of mice with skin squamous cell carcinoma are 
EpCAM− and enriched in hybrid EMT states, demonstrating that cells 
with hybrid phenotypes exhibit increased colonization potential and 
intravasate more efficiently114,149. Hybrid EMT has been detected in 
CTCs from patients with non-small cell lung cancer150 and prostate151, 
colorectal152, pancreatic153, breast, liver, gastric and nasopharyngeal 
cancers115. The sodium channel NALCN regulates CTC dissemination, 
with its loss of function in a mouse model increasing the proportion of 
CTCs and blood trafficking of normal unmutated cells154.

Plasticity within distinct CTC phenotypes has been shown to 
contribute to cancer progression and chemoresistance. Analysis of 
CTCs from women with ER+HER2− breast tumors reveals that 84% of 
CTCs acquire HER2 expression without genetic amplification. Cultured 
HER2+ and HER2− CTCs interconvert spontaneously, with oxidative 
stress and chemotherapy enhancing transition toward the HER2− phe-
notype, whereas the HER2+ state is the most proliferative155. While in 
circulation, the oxidative stress of CTCs increases, and, to prevent reac-
tive oxygen species (ROS)-mediated cell death, tumor cells increase 
antioxidant production156. In melanoma patient-derived xenografts 
and mouse models, metastatic cells increasingly depend on nicotina-
mide adenine dinucleotide phosphate (NADPH)-generating enzymes 
from the folate pathway to regenerate glutathione and withstand 
oxidative stress157. Efficiently, metastatic cells increase lactate uptake 
through upregulation of monocarboxylate transporter 1 (MCT1), 
preventing oxidative stress158. Metabolic changes depend on the path 
by which tumor cells reach the secondary organ. In melanoma, CTCs 
migrating through blood vessels are subjected to higher oxidative 
stress and ferroptosis than CTCs in lymphatic vessels and become 
dependent on the ferroptosis inhibitor GPX4 to survive, whereas CTCs 
migrating through lymphatic vessels rely on antioxidant-like oleic 
acid and glutathione159. CTC clustering protects from ROS production 
through HIF1α induction and mitophagy, switching energy produc-
tion toward glycolysis. Blocking metabolic rewiring following CTC 
clustering inhibits metastasis160.

Metastatic colonization. EMT reversion by mesenchymal-to-epithelial 
transition (MET) can promote metastasis (Fig. 3). Loss of E-cadherin 
increases invasiveness, but its expression protects cells from oxida-
tive stress during dissemination and seeding, promoting metastatic 
colonization161. Tumor cells can form heterotypic junctions using 
E-cadherin and N-cadherin expressed by stromal cells in the metastatic 
niche, promoting survival and growth162. Some MICs display hybrid 
EMT, maintaining E-cadherin expression and mesenchymal traits163.

Whereas metastasis is associated with EMT in mouse skin squa-
mous cell carcinoma, most metastases do not display EMT features, 
suggesting that MET can be important for colonization149. Evidence 
shows that metastases can reacquire an epithelial phenotype, but 
whether this is a cause or consequence of the metastatic cascade 
remains unknown164. Several studies highlight the need of downregu-
lating EMT factors for metastasis formation. Twist1-mediated EMT 
in squamous cell carcinoma promotes invasion and CTC circulation, 
whereas Twist1 downregulation promotes metastatic colonization165. 
PRRX1 promotes EMT and invasion in pancreatic ductal adenocarci-
noma but needs to be repressed for metastatic colonization166. The 
action of PRRX1 was later shown to be mediated by two distinct iso-
forms: PRRX1b promoting EMT, invasion and migration and PRRX1a 
stimulating liver metastatic outgrowth, tumor differentiation and MET. 
Thus, metastatic dissemination needs a switch from PRRX1b at the first 
step of the metastatic cascade to PRRX1a at its end167.

MICs can arise from CSCs or be generated by the dedifferentiation 
of non-CSCs. In mouse models of colorectal cancer, disseminated cells 
do not express the stem cell marker Lgr5. However, a fraction of the dis-
seminated cells re-express Lgr5 during macro-metastasis formation168, 
which explains why Lgr5+ lineage ablation inhibits liver metastasis 
formation in colorectal cancer58. Recently, metastatic recurrence in 
colorectal cancer has been shown to arise from residual epithelial 
membrane protein 1 (Emp1)-expressing cells, a subset of Lgr5− tumor 
cells endowed with migratory properties. The ablation of Emp1+ cells 
in vivo during primary colorectal cancer growth prevents metastatic 
dissemination, whereas ablation after primary tumor resection does 
not affect metastatic progression. Therefore, Emp1+ cells can be con-
sidered the cell of origin of metastasis in colorectal cancer, whereas the 
Lgr5+ stem cell and proliferation programs are necessary for metastatic 
outgrowth, demonstrating the importance of cell plasticity in metasta-
sis formation169. Additionally, the organotropism of metastatic cells is 
partially dictated by the conjunction of their metabolic needs and the 
nutrients available in the secondary organ. Metastatic breast cancer 
cells preferentially metastasize to the lung because they use local 
pyruvate to boost collagen hydroxylation, leading to the establishment 
of a metastatic niche170.

Extrinsic regulation of cancer cell plasticity
Metastasis initiation and the tumor niche. The niche is crucial for 
EMT induction and metastasis initiation (Fig. 3). Fibroblasts support 
tumor cells by secreting extracellular matrix and matrix metallo-
proteinases, promoting migration, invasion and angiogenesis and 
favoring tumor cell plasticity. TGFβ secretion by tumor cells is essen-
tial for fibroblast recruitment and activation during the first steps 
of tumorigenesis. Activated fibroblasts then activate autocrine and 
paracrine secretion of TGFβ, inducing EMT in tumor cells and pro-
moting immune escape171,172 (Fig. 4). Co-transplantation experiments 
of CSCs and fibroblasts with high TGFβ expression show increased 
lung metastasis in a TGFβ-dependent manner in squamous cell carci-
noma173. Fibroblasts can indirectly induce EMT by promoting increased 
extracellular matrix stiffness, leading to mechanotransduction sig-
nals174,175 (Fig. 4).

The abundance of blood vessels within the vascular niche of the 
primary tumor increases the bloodstream accessibility of tumor 
cells. Stromal and tumor cells secrete cytokines and chemokines 
to recruit immunosuppressive and pro-tumoral macrophages and 
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tumor-associated neutrophils that promote invasiveness by secret-
ing EGF and modulating the extracellular matrix through cathepsins 
and matrix metalloproteinase 9 and can increase MIC survival176  
(Fig. 3). Mesenchymal stem-like cells in tumor niches arise from the 
bone marrow and other perivascular regions (for example, adipose 
tissue) and interact with tumor and stromal cells to promote vascu-
larization, immune modulation and extracellular matrix remode-
ling177. They can induce EMT through exosome communication, TGFβ 
secretion and extracellular matrix remodeling, especially through 
hyaluronan secretion, activating CD44 and upregulating lysyl oxi-
dase and Twist1 in breast cancer cells178,179 (Fig. 3). Macrophages 
also influence EMT and tumor cell plasticity. In glioblastoma, mac-
rophages induce EMT through oncostatin M secretion, activating the 

STAT3 pathway in tumor cells180 (Fig. 4). In both mouse and human 
non-small cell lung cancer, resident macrophages promote EMT 
and invasion during early metastatic dissemination and protect 
tumor cells from immune destruction by inducing a regulatory T cell 
response181 (Fig. 3). In skin cancer, macrophage infiltration increases 
in hybrid or full EMT tumor areas, as compared to epithelial regions. 
Macrophage depletion increases epithelial states and decreases EMT, 
showing the importance of macrophage–tumor cell communication 
in regulating EMT114.

Dissemination of tumor cells and cross-talk with the tumor micro-
environment. Tumor cells survive in the bloodstream by being coated 
with platelets and interacting with white blood cells, fibroblasts, 

Molecular mechanisms regulating cancer cell plasticity

CAFs
TAMs CAFs Inflammation

Hypoxia

TAMs
Neutrophils

Endothelial cells

Growth factors IL–6 Wnt

H3K36me2H3K4me3

SNAI1/SNAI2
ZEB1/ZEB2
Twist1/Twist2

Bivalent
chromatin

DeltaTGFβ

TGFBR

Niche

Signaling
pathways

Transcription

Chromatin

Nucleus

SMAD2

SMAD4

RAS

RAF

PI3K STAT3 β-catenin

PRC2

KDM2ANSD2LSD1
KMT2–

COMPASS

EMT Stemness

NICD HIF1/HIF2 NF-κBILK

AKT

MEK1/MEK2

ERK1/ERK2

SMAD3

Remodeling

TRKs IL-6R FZD

ECM Cell
membrane

Notch CD44Integrins

miR-200
miR-34

SOX2
KLF4

Fig. 4 | Molecular mechanisms regulating cancer cell plasticity. 
Cancer cell plasticity is regulated extracellularly, by signals coming from 
the microenvironment, and intrinsically, through signaling pathways, 
transcriptional programs and chromatin remodeling. TGFβ and RAS–MAPK 
pathways can act jointly to induce EMT. CD44 and Wnt regulate stemness, while 
Notch, JAK–STAT and integrins act on stemness and EMT in a context-dependent 
manner. Hypoxia induces stemness, while NF-κB is involved in plasticity by 
its role in inflammation. These pathways activate transcriptional programs 
regulated by key transcription factors involved in EMT (for example, SNAI1, 
SNAI2, ZEB1, ZEB2, Twist1, Twist2) and stemness (for example, SOX2, KLF4). 
Their action can be modulated by negative feedback loops involving microRNA 

(for example, ZEB–miR-200 and SNAI1–miR-34) and depends on the chromatin 
landscape. LSD1 can remove the transcriptionally active H3K4 trimethylation 
(H3K4me3) histone mark and collaborate with SNAI1 to silence epithelial genes. 
Nuclear receptor-binding SET domain protein 2 (NSD2) and lysine demethylase 
2A (KDM2A) exhibit antagonist actions, as writer and eraser of histone 3 lysine 
36 dimethylation (H3K36me2), a histone mark increased during EMT. Polycomb 
repressive complex 2 (PRC2) and type 2 lysine methyltransferase (KMT2)–
complex of proteins associated with Set1 (COMPASS) are critical to regulate the 
epithelial state. FZD, frizzled; IL-6R, IL-6 receptor; ILK, integrin-linked kinase; 
NICD, Notch intracellular domain; TGFBR, transforming growth factor receptor; 
TRK, tyrosine receptor kinase.
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macrophages and endothelial cells147. Cross-talk between tumor cells 
and macrophages is required for CTC-mediated colorectal cancer 
metastasis and promotes EMT-related plasticity182 (Fig. 3). Neutrophil–
tumor cell clusters seem to be more metastatic than tumor cell clusters 
alone, due to increased neutrophil-mediated cell cycle progression 
in tumor cells183. Interaction with platelets provides resistance to the 
bloodstream shredding force and induces EMT through TGFβ and 
NF-κB pathway activation184 (Fig. 4).

Metastatic niche. The metastatic niche is the specific microenviron-
ment generated by stromal cells, the extracellular matrix and diffusing 
signals that stimulate metastasis formation. Perivascular niches create 
excellent metastatic niches. Although cross-talk between the meta-
static perivascular niche and tumor cells is not fully understood, several 
mechanisms have been identified. In breast-to-lung cancer metastasis, 
tumor cells secrete tenascin C, which activates macrophages through 
Toll-like receptor 4. Macrophages activate endothelial cells through 
tumor necrosis factor-α and nitric oxide secretion, supporting metas-
tasis formation185. Therapy might favor metastatic niche formation. 
Lung radiotherapy can create a pro-metastatic microenvironment 
through neutrophil activation, which then activates Notch signaling, 
inducing tumor stemness and enhancing metastasis186 (Fig. 4). The 
metastatic niche promotes metastatic outgrowth but can favor further 
dissemination. For instance, the bone microenvironment promotes 
multi-organ metastases through epigenetic reprogramming of tumor 
cells, mediated by enhanced activity of the methyltransferase EZH2, 
promoting disseminated tumor cell stemness in the bone187.

The mechanisms of MET induction in MICs are not fully under-
stood but involve signals from the metastatic niche. E-selectin secre-
tion in the metastatic niche induces a specific form of MET in the bone 
through Wnt pathway activation188. Secretion of the cytokine LIF by 
bone mesenchymal stem cells induces MET through the activation of 
LIF receptor, the kinase ERK and STAT3 in early disseminated CSCs189. 
In liver metastasis from colon cancer, MET can be induced through 
inhibition of the Src kinase and epidermal growth factor receptor 
(EGFR) pathways190. In lung metastasis, versican secretion by bone 
marrow-derived myeloid progenitors recruited to the lung inhibits 
SMAD2 phosphorylation and SNAI1 expression in MICs, resulting in 
MET and increased proliferation191. In breast cancer-derived lung 
metastasis, MET can be induced by fibroblasts through TGFβ path-
way inhibition and BMP activation192 (Fig. 3). Fibroblast activation 
occurs through MIC-secreted thrombospondin 2, which depends 
on MIC mesenchymal features, showing that MET is not required 
in the first step of colonization but needs to be induced through 
microenvironment reprogramming192. MET induction can occur 
through protein kinase A activation in human breast cancer but blocks 
tumor-initiating properties and decreases metastasis by promoting 
differentiation193.

Increasing evidence suggests that tumor cells prepare their niche 
before colonization. Premetastatic niche conditioning involves vas-
cular leakiness, reprogramming of resident cells and attraction of 
bone marrow-derived cells194 (Fig. 3). Some mechanisms are induced 
by disseminated cells at the metastatic site, but distant reprogram-
ming by the primary tumor through secretion of soluble molecules 
and exosomes also occurs. MiR-25-3p-containing exosomes secreted 

by colorectal cancer can induce angiogenesis and vascular leaki-
ness through inhibition of the transcription factors KLF2 and KLF4 
in endothelial cells. In vivo treatment with these exosomes leads to 
increased vascular permeability in lung and liver, whereas depleting 
miR-25-3p reduces metastasis in both organs195. A phenotypic switch 
in pericytes and vascular smooth muscle cells of the premetastatic 
niche toward a more undifferentiated state is mediated by increased 
KLF4 expression due to tumor-derived factors and exosomes. Repro-
grammed perivascular cells exhibit increased proliferation and expres-
sion of extracellular matrix components, creating a permissive soil 
for metastasis196.

Tumor dormancy
Disseminated cells can enter dormancy at the metastatic site (Fig. 3). 
This growth arrest occurs by a balance between proliferation and apop-
tosis due to poor vascularization, immune destruction, lack of nutrients 
and growth factors or through inhibitory signals from the microenvi-
ronment (for example, TGFβ)197–199. Dormant cells are characterized by 
activated survival pathways, cell cycle arrest and sustained unfolded 
protein response and hypoxia200 (Fig. 3). Quiescence allows cells to 
evade immune responses and chemotherapy, remaining undetectable 
by imaging techniques but being responsible for relapse even years 
after clinical remission200.

Mechanisms by which tumor cells enter and exit dormancy are 
not fully understood (Fig. 3). Dormant cells display plasticity to transit 
between states, but whether EMT or MET promote reactivation and 
awakening from dormancy remains unclear. EMT induced by inflam-
mation in a ZEB1-dependent manner awakens dormant tumor cells 
in xenografting experiments124,201. However, in breast cancer, TGFβ 
exhibits cytostatic effects, impairs the cell cycle and promotes dor-
mancy, whereas the TGFβ antagonist Coco promotes reactivation of 
dormant cells in the lung199,202. Additionally, mesenchymal CSCs need 
to undergo MET and express E-cadherin to enable contact between 
tumor cells and promote survival and proliferation203.

Dormancy is tightly controlled by the microenvironment.  
Secretion of collagen III by tumor cells at the metastatic site favors dor-
mancy, whereas disruption of the collagen III-enriched matrix induces 
awakening and proliferation of dormant cells through discoidin domain 
receptor tyrosine kinase 1-mediated STAT1 signaling204. In the lung, 
inflammation induces the formation of neutrophil extracellular traps, 
which favor the awakening of tumor cells through laminin cleavage 
and integrin α3β1 activation205. Cancer cells can be primed by the pri-
mary tumor to become dormant. In breast cancer and head and neck 
squamous cell carcinoma, tumor cells exposed to hypoxia are prone 
to becoming dormant206. Modifications of the microenvironment dur-
ing aging also play a role in entering or exiting dormancy. Age-related 
changes in fibroblasts have been linked to increased metastasis in mela-
noma. Aged dermal fibroblasts show increased secretion of the Wnt 
antagonist sFRP2, which induces resistance to the ROS-mediated DNA 
damage response in melanoma cells, conferring resistance to therapy 
and increased metastasis. Aged fibroblasts in the lung secrete more 
sFRP1 and block Wnt5a-mediated induction of dormancy, stimulating 
metastatic growth207,208. Age-related changes affecting the microen-
vironment might explain the resurgence of metastatic lesions years 
after treatment.

Fig. 5 | Genetically induced drug resistance and non-genetic drug tolerance 
in anti-cancer therapy. a,b, Pre-existing (a) or acquired (b) mutations can confer 
intrinsic genetic drug resistance, by which mutated tumor cells can display a 
clonal selection, survive and proliferate under a particular therapeutic regimen. 
c, Non-genetic drug tolerance can occur through transcriptional selection of 
primed cells that acquire a DTP dormant state during therapy and can lead to 
tumor relapse after therapy. d, Non-genetic drug tolerance can occur through 
an adaptation to the therapeutic pressure, by which plastic tumor cells acquire 

a DTP quiescent state following therapy and can lead to tumor relapse after 
therapy. e, Targeting the signaling pathways activated in the DTP state enables its 
eradication. The DTP state induced upon treatment with inhibitors of BRAF and 
MEK (BRAFi, MEKi) in melanoma relies on FAK signaling, and the transcriptional 
program of this state is largely driven by the nuclear receptor RXR. Consistently, 
the DTP state can be targeted by FAK inhibition and RXR antagonism (FAKi, RXRi). 
However, de novo mutations could still lead to genetic resistance and tumor 
relapse221,222. RAR, retinoic acid receptor; SC, stem cell.
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Cell plasticity and cancer therapy
Drug tolerance constitutes a major obstacle for therapy. In the fol-
lowing section, we discuss the roles of plasticity in therapy resist-
ance.

Drug-tolerance mechanisms
Although therapeutic resistance was thought to be exclusively a con-
sequence of genetic alterations in tumor cells (Fig. 5a,b), accumulating 
evidence suggests that drug-tolerant states exist in the absence of 
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mutations. Drug-tolerant persistent (DTP) cells display four hallmarks: 
slow proliferation, metabolic flexibility, adaptation to the microen-
vironment and phenotypic plasticity. The major difference between 
mutations conferring resistance and DTP states is the absence of revers-
ibility or plasticity in mutations, whereas DTP cells survive but do not 
proliferate under treatment and their progeny remains sensitive to 
treatment after drug withdrawal209,210.

Primed DTP cells might exist before treatment, with expression 
of a particular transcriptional program providing them with intrinsic 
tolerance to a drug and leading to their selection under treatment 
(Fig. 5c). In other cases, DTP cells become induced upon treatment, 
as tumor cells adapt to therapeutic pressures and activate a transcrip-
tional program that provides a selective advantage to escape209,210 
(Fig. 5d). The acquired DTP state exploits plasticity, as tumor cells 
undergo a phenotypic switch and adopt a reversible quiescent state 
to survive. The DTP state can manifest as transient or stable. Transient 
DTP cells regenerate the initial tumor heterogeneity after drug with-
drawal, with the tumor remaining sensitive to therapy. By contrast, in 
a stable tolerance situation, the tumor adapts to therapy, becoming 
insensitive to it. The therapy-evasive traits of DTP cells are mediated 
by epigenetic, transcriptional and translational regulatory processes 
and complex interactions between tumor cells and within their micro-
environment10,209,210. Tumor cells employ a developmentally conserved 
mechanism similar to diapause to drive the DTP state, as observed in 
organoids, patient-derived xenografts and patient samples211,212.

EMT promotes drug-tolerant states, and EMT tumor cells are 
highly resistant to anti-cancer therapy209. A recent study has demon-
strated that RhoJ, a small GTPase, controls the resistance of EMT tumor 
cells to a wide range of chemotherapeutic agents by promoting DNA 
repair through the regulation of nuclear actin213. Primed DTP cells 
have been described in melanoma and breast cancer. In vitro studies in 
BRAF-mutant melanoma identify a DTP state upon BRAF inhibition that 
arises through a multistep process214. Before therapy, rare subpopula-
tions display a transient primed state with high expression of resistance 
markers (for example, EGFR), with this state becoming stable through 
epigenetic reprogramming following treatment. Genetic factors such 
as those encoded by SOX10 and MITF affect fate decisions, revealing 
a plasticity model of resistance to BRAF inhibition that pushes cells 
toward differentiation214,215. Single-cell sequencing of triple-negative 
breast cancers treated with chemotherapy shows resistant genotypes 
to be pre-existing but also reveals the existence of a small fraction of 
primed DTPs, whereas chemotherapy induces an acquired DTP state 
through transcriptional reprogramming216.

Emerging evidence indicates that tolerance can be acquired by 
switching to a phenotypically distinct DTP state. In prostate cancer, DTP 
cell plasticity is promoted by combined loss-of-function mutations in 
TP53, RB1 or PTEN39. Both mouse and human models demonstrate that 
tumors develop resistance to androgen-deprivation therapy with enza-
lutamide by a phenotypic shift from androgen receptor-dependent 
luminal epithelial cells to androgen receptor-independent basal-like 
cells, enabled by the loss of TP53 and RB1 functions and mediated by 
increased SOX2 and EZH2 expression39,217. Single-cell transcriptomics of 
patient samples with prostate cancer reveals that resistant adenocarci-
noma cells upregulate EMT and TGFβ signaling gene programs, whereas 
small cell carcinoma exhibits higher activity of proteins encoded by 
NANOG, SOX2 and EZH2 (ref. 218). Mouse and human organoids and 
genetically engineered mouse models of prostate cancer show the 
emergence of a DTP state in an epithelial population by JAK–STAT 
signaling following androgen receptor inhibition219,220.

In BRAF-mutant melanoma patient-derived xenografts, dedif-
ferentiation into a reversible neural crest stem cell-like state driven by 
retinoid X receptor (RXR) γ (RXRG) and FAK signaling contributes to the 
development of resistance to inhibitors of the kinases RAF and MEK221,222 
(Fig. 5e). In basal cell carcinoma, Hedgehog pathway inhibition by 
vismodegib leads to differentiation toward squamous and sebaceous 

identities, but some tumor cells enter a quiescent Lgr5-expressing 
state characterized by Wnt signaling223,224. In patients with resistant 
non-small cell lung cancer with EGFR mutations, transformation to 
small cell lung cancer is observed histologically following EGFR inhi-
bition. DTP cells present retinoblastoma protein loss and transdif-
ferentiate into a different epigenetic state that does not require EGFR 
signaling225. Single-cell transcriptomics of non-small cell lung cancer 
patient biopsies before and after targeted therapy reveals the existence 
of a slowly proliferating population with alveolar traits226. Induction of 
a slow-cycling DTP state seems to be a common survival mechanism. 
Despite most cells remaining quiescent, recent work in lung cancer 
reveals DTP lineages that can maintain their proliferative capacity in 
the presence of drugs227.

Epigenetic reprogramming mechanisms also drive DTP state 
plasticity in vitro and in vivo. A DTP state maintained by an altered 
chromatin state that requires the histone demethylase KDM5A ( JARID1) 
was identified in EGFR-mutant non-small cell lung cancer following 
tyrosine kinase-inhibitor treatment228,229. Upon receptor tyrosine kinase 
inhibition, glioblastoma stem cells transit to a DTP state characterized 
by upregulation of neurodevelopmental programs, dependency on 
Notch signaling, redistribution of repressive histone methylation and 
dependency on histone demethylases KDM6A and KDM6B230. In breast 
basal-like cancer, the DTP state upon treatment with MEK and/or PI3K–
mammalian target of rapamycin (mTOR) inhibitors is EMT related and 
driven by changes in bromodomain-containing protein 4 (BRD4), the 
lysine demethylase KDM5B and EZH2 (ref. 231). Following γ-secretase 
inhibition in T cell acute lymphoblastic leukemia, pre-existing DTP cells 
adopt an altered chromatin state and are dependent on BRD4 (ref. 232).

The importance of EMT in therapy resistance has been shown in 
different contexts6,113. Snail determines the response to mTOR kinase 
inhibitors by transcriptional repression of the repressor 4E-BP1 in 
human breast, colon and lung cancer cell lines233. A mesenchymal 
undifferentiated DTP state that often expresses ZEB1 and depends on 
a druggable lipid peroxidase pathway that protects against ferroptosis 
has been observed in human tumors and cell lines under multiple treat-
ment modalities across cancer lineages234.

Wnt signaling is the major oncogenic driver of colorectal cancer. 
Whereas, in most cases, constitutive activation is mediated by muta-
tions in downstream pathway components, such as APC or β-catenin, a 
fraction of colorectal cancers is mediated by a fusion protein between 
the Wnt co-receptors RSPO3 and PTPRK235, which renders tumor cells 
sensitive to Wnt signaling inhibition. A blocking antibody against 
RSPO3 inhibits tumor growth and induces the switch from a stemness 
state toward a differentiated state236. YAP signaling can promote Wnt 
independence in these tumors by lineage reversion to a fetal-like 
state237. In colorectal cancer patient-derived xenografts, minimal 
residual disease following EGFR blockade is associated with acquisition 
of a DTP state that displays a Paneth cell-like phenotype characterized 
by high Wnt signaling and regulated by YAP inactivation238. Colorectal 
cancer patient-derived organoids show that chemotherapy induces 
quiescence in TP53-wild-type tumor cells, linked to acquisition of the 
fetal-like state, with the RNA-binding protein MEX3A marking a latent 
Lgr5+ DTP state, which persists by downregulating Wnt after chemo-
therapy and adopts a transient state reminiscent of YAP+ intestinal pro-
genitors239,240. Lgr5+ CSCs that display a dormant behavior express p27 
(encoded by CDKN1B). Lgr5+p27+ cells wake from dormancy through 
focal adhesion kinase (FAK)–YAP activation241.

Elimination of drug-tolerant cells
Multiple plasticity mechanisms can promote DTP state acquisition. 
Although some mechanisms could be specific to tumors, altering 
cell fate decisions by targeting hallmarks of DTP cells across cancers, 
including slow proliferation, signaling pathway activation, adapted 
metabolism and microenvironment regulators, could help eliminate 
minimal residual disease and avoid relapse209,210.
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A first approach to eradicate DTP cells relies on targeting their slow 
proliferation by incorporating epigenetic modulators into existing 
therapies. Disrupting the repressed chromatin state that maintains 
resistance to EGFR tyrosine kinase-inhibitors in non-small cell lung can-
cer by histone deacetylase (HDAC) inhibition or by IGF1 receptor inhibi-
tion is lethal to DTP cells in vitro228,229. Several clinical studies examined 
the combination of an HDAC inhibitor with a tyrosine kinase-inhibitor, 
which appears to be well tolerated and presents clinical benefits in 
non-small cell lung cancer progression (NCT01302808)242. Similarly, 
co-treatment with the PI3K–mTOR inhibitor BEZ235 and the bromodo-
main and extra-terminal domain (BET)–BRD4 inhibitor JQ1 in basal-like 
breast cancer prevents chromatin remodeling, inhibiting acquisition of 
the DTP state and resulting in cell death in vitro and xenograft regres-
sion in vivo231. JQ1 induces DTP cell apoptosis in vitro in T cell acute 
lymphoblastic leukemia following γ-secretase inhibition, whereas 
combined therapy with JQ1 is effective in vivo232.

Targeting signaling pathways activated in tumor cells could elimi-
nate DTP cells. The stem cell-like state acquired following RAF–MEK 
inhibition in melanoma can be targeted by a combination of FAK inhibi-
tion and RXR antagonism221,222. Although eliminating the DTP subpopu-
lation is sufficient to avoid non-genetic tolerance, resistance can occur 
through the acquisition of de novo mutations221,222 (Fig. 5e). In basal cell 
carcinoma, targeting the Wnt and Hedgehog pathways together leads 
to DTP state eradication in vivo223,224. Inhibition of JAK–STAT signaling 
in mouse and human prostate organoids re-sensitizes tumors to andro-
gen receptor-targeted therapy219. Targeting YAP–TAZ might prevent 
or reverse Wnt-inhibitor resistance in intestinal cancer and eliminate 
quiescent cells in colorectal cancer237,239,241. TGFβ inhibition increases 
squamous cell carcinoma susceptibility to chemotherapy, prevent-
ing entry into a quiescent state243. Blocking TGFβ signaling reduces 
stemness and attenuates metastasis upon chemotherapy in breast 
cancer244. In EMT cells, the DTP state depends on GPX4, the loss of which 
results in ferroptotic death in vitro and prevents relapse in vivo234,245.

Targeting microenvironment regulators could contribute to elimi-
nating DTP cells. The microenvironment elicits innate resistance to RAF 
inhibitors through the expression of HGF, while dual inhibition of BRAF 
and the HGF receptor Met prevents drug resistance in BRAF-mutant 
melanoma246. Chemotherapy induces c-Jun N-terminal kinase ( JNK) 
pathway activation in patients with breast cancer, enhancing expres-
sion of extracellular matrix and stem cell niche components osteo-
pontin, SPP1 and TNC and conferring chemoresistance. JNK or SPP1 
inhibition sensitizes mouse tumors and metastases to chemotherapy247. 
Inflammatory fibroblasts control the response to therapy in rectal can-
cer248. IL-1-dependent signaling elevates DNA damage in inflammatory 
fibroblasts, promoting senescence and resulting in therapy resistance, 
which could be overcome by IL-1 receptor (IL-1R) inhibition, leading to 
a clinical trial testing the combination of chemoradiotherapy with an 
IL-1R antagonist in rectal cancer (NCT04942626)248.

The highly dynamic, heterogeneous and plastic properties of the 
DTP state are a major challenge. Transcriptional profiling by single-cell 
sequencing to measure phenotypic changes along clinical evolution 
could enable individualized therapies to overcome drug tolerance.

Targeting cell plasticity
Strategies to inhibit CSC self-renewing capacities or to promote their 
differentiation can lead to CSC exhaustion and tumor regression. 
Anti-CSC therapy was first shown for acute promyelocytic leukemia, 
with all-trans retinoic acid promoting leukemic cell differentiation into 
terminally differentiated myeloid cells249. Today, the combination of 
retinoic acid, arsenic trioxide and/or chemotherapy cures more than 
90% of patients with this type of leukemia249.

Lysine demethylase 1A (LSD1) is required to sustain the tumo-
rigenic program of CSCs in several cancer types and is important for 
maintaining plasticity and proliferation in Merkel cell carcinoma 
in vivo250. Histone 3 lysine 4 (H3K4) methylation is required for 

retinoic acid-driven differentiation, but this methylation mark is lost 
in acute myeloid leukemia due to LSD1 overexpression. A phase I trial 
(NCT02273102) recently demonstrated that responsiveness to retinoic 
acid can be potentiated by LSD1 inhibition251. Epigenetic therapy also 
relies on HDAC and JAK–STAT inhibitors. The JAK1–JAK2 inhibitor 
ruxolitinib and the HDAC inhibitor belinostat independently enhance 
dependence on B cell lymphoma 2 (BCL-2) for survival, sensitizing leu-
kemic cells to the BCL-2 inhibitor venetoclax252. Other epigenetic drugs 
include DNA methyltransferase inhibitors (for example, azacitidine and 
decitabine, approved for myelodysplastic syndromes) and EZH2 and 
BET inhibitors, which are being tested in clinical studies of hematologic 
malignancies253. A better understanding of sensitive tumor cells and 
the effect of epigenetic inhibitors on normal cells would improve the 
rationale of using epigenetic therapy to target plasticity and avoid 
toxic side effects.

Markers defining the stemness tumor state have been considered 
unlikely candidates for antibody therapy, as they are expressed by 
healthy stem cells. Accordingly, an antibody–drug conjugate directed 
against CD33+ CSCs in acute myeloid leukemia received approval of the 
Food and Drug Administration but was withdrawn due to toxicity54.  
A bivalent antibody against EGFR and LGR5 inhibits EGFR in CSCs,  
suppressing tumor growth in epithelial tumors and blocking metastasis 
initiation254.

An alternative approach relies on inhibiting CSC signaling path-
ways. In preclinical glioblastoma studies, combined therapy with a 
Notch–γ-secretase inhibitor, radiotherapy and temozolomide reduces 
stemness markers and tumor growth while prolonging survival255. 
Notch inhibition has been assessed in clinical trials for more malignan-
cies, such as breast and lung cancer, failing to meet expectations due to 
dose-limiting gastrointestinal toxicity256,257. Most signaling pathways 
involved in plasticity are key developmental pathways, the targeting 
of which commonly leads to off-tumor toxicities because of effects on 
normal cells. Resistance to therapy targeting CSCs due to plasticity of 
non-CSCs, which can replenish the CSC pool, limits its efficacy54,258. 
Combined treatment with molecules preventing plasticity of non-CSCs 
would be required for successful clinical outcomes. Dormancy remains 
a major challenge for therapy, and awakening this subpopulation to 
increase its susceptibility to chemotherapy (for example, by activat-
ing the interferon α pathway) is being considered259. Maintaining the 
quiescent state to prevent metastatic outgrowth is an alternative, 
although it would require lifelong treatment.

Intratumor heterogeneity and cell plasticity also pose persisting 
challenges. Impairing plasticity as a therapeutic approach to limit the 
degree of heterogeneity and restrain the capacity of tumor cells to 
resist therapy seems promising, as blocking the mechanisms inducing 
plasticity in DTP cells might lead to therapeutic benefits. However, 
these mechanisms might differ among tumors and multiple adapta-
tion mechanisms may act redundantly to sustain the DTP state. Further 
efforts would be needed to develop clinically relevant treatments 
targeting plasticity in solid cancers260.

As tumor cell plasticity is often mediated by the microenvi-
ronment, targeting it to sensitize tumor cells might be a promising 
therapeutic approach. Wnt16B could become an attractive target for 
increasing responsiveness to chemotherapy in prostate cancer, as 
Wnt16B expression in the microenvironment attenuates the effects 
of chemotherapy in vivo261.

Immune escape
Cell plasticity and stemness play an important role in immune eva-
sion. CSCs appear to be the first tumor subpopulation to escape 
immune surveillance, due to their slow-cycling traits and their ability 
to downregulate the expression of antigen-presenting machinery262. 
In squamous cell carcinoma, CSCs responding to TGFβ resist immu-
notherapy based on adoptive cytotoxic T cell transfer. These CSCs 
express the immune marker CD80 and inhibit cytotoxic activity of 
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T cells by exhaustion, following cytotoxic T lymphocyte-associated 
protein 4 (CTLA4) engagement. Immunotherapy blocking CTLA4 or 
TGFβ1 sensitizes CSCs to adoptive cytotoxic T cell transfer in mouse 
and human tumors263.

Metastatic cells escape immune surveillance through quiescence. 
Metastases from breast cancer expressing SOX2 and SOX9 and display-
ing CSC features can escape natural killer cell-mediated clearance by 
entering a slow-cycling state through downregulation of Wnt signal-
ing in vivo264. EMT induction in tumor cells has been associated with 
immune evasion and resistance to cytotoxic T cells and natural killer 
cells265. Mechanisms driving resistance are not fully understood but 
include perturbation of the immune synapse, induction of autophagy 
and programmed cell death ligand 1 (PD-L1) expression266,267.

Combined therapy to reduce the immunosuppressive microenvi-
ronment and cell plasticity by targeting cytokines, such as TGFβ, has 
the potential to increase the efficacy of immune checkpoint blockade. 
The presence of TGFβ in the microenvironment blocks the acquisition 
of the CD4+ type 1 helper T cell phenotype268. Moreover, TGFβ signaling 
in fibroblasts restricts the localization of CD8+ T cells in the peritumoral 
stroma rich in fibroblasts and collagen, whereas TGFβ inhibition allows 
T cell infiltration into the tumor268,269. However, a bifunctional antibody 
targeting both TGFβ ligand and PD-L1 has recently failed in a clinical 
trial for metastatic colorectal cancer (NCT03436563), and substantial 
tumor progression in the first four patients led to premature discon-
tinuation of the study270.

Preclinical findings in mice would need to be highly reproduc-
ible and rigorously validated with human biospecimens to be con-
sidered for patient selection criteria in clinical trials. Improving the 
drug-optimization and lead-selection process would improve the 
success of a given drug candidate targeting plasticity.

Concluding remarks
This Review presents the importance of cell plasticity in cancer initia-
tion and progression, metastasis and resistance to therapy. Distinct 
modes of plasticity are involved in maintaining tumor growth through 
proliferative states and CSCs, which are also essential in the metastatic 
cascade. Plasticity also allows tumor cells to evade selective pressures 
and overcome therapy. A better understanding of tumor cell-intrinsic 
and -extrinsic mechanisms that regulate plasticity could open the road 
to new therapeutic strategies and improve patient survival in the near 
future.
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