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BACKGROUND: At the 

surface of body or-

gans, epithelial tis-

sues must withstand 

harsh external envi-

ronments. To do so, 

they rely heavily upon 

stem cells to replenish 

and repair wounds and replace the many 

cells that die from this wear and tear. To 

maintain tissue size, the number of cells 

lost must be compensated by cell divisions. 

Tissue homeostasis and wound repair are 

ensured by stem cells, located within spe-

cialized microenvironments, referred to as 

niches. Each niche is tailored to accommo-

date the regenerative needs of its tissue. 

Some tissues—for instance, skin epithe-

lium—harbor multiple stem cell niches, 

each with their own responsibility for 

maintaining cellular balance within their 

particular domain. Governance of discrete 

tissue units has ancient origins and is also 

seen in Drosophila gut epithelium. 

Identifying stem cells and tracking their 

progeny is accelerated by lineage tracing, a 

technique in which a stem cell is genetically 

marked in its niche and in a way such that 

their subsequent progeny retain marker ex-

pression. Although interpretation of these 

experiments has been complicated by the 

lack of specificity of most stem cell mark-

ers, this method can be helpful in evaluat-

ing the contribution of stem cells to tissue 

homeostasis and wound repair. Additional 

tools include live imaging of marked stem 

cells and ablating stem cells in situ either 

by laser or by targeted expression of diph-

theria toxin/receptor in stem cells. 

ADVANCES: Accumulating evidence on 

bone marrow, intestinal stem cell crypts, 

and hair follicles suggests that stem cells 

often exist in two distinct states based upon 

their relative activity and/or their ease of ac-

tivation during homeostasis and/or wound-

induced regeneration. Recent studies on 

the hair follicle reveal that signals emanat-

ing from both heterologous niche cells and 

from lineage progeny influence the tim-

ing and length of stem cell activity. This in 

turn can profoundly affect the amount of tis-

sue regenerated. Stem 

cell ablation studies on 

both intestinal and hair 

follicle stem cell niches 

further show that the 

two states are intercon-

vertible, perhaps best 

exemplified by the ability of a single intes-

tinal stem cell to eventually outcompete its 

siblings during rounds of turnover within 

an intestinal villus. 

Additional new findings suggest that 

fates and multilineage potentials of epi-

thelial stem cells can change, depending 

upon whether a stem cell exists within its 

resident niche and responds to normal tis-

sue homeostasis, whether it is mobilized 

to repair a wound, or whether it is taken 

from its niche and challenged to de novo 

tissue morphogenesis after transplantation. 

In this Review, we discuss how naturally 

lineage-restricted populations of stem cells 

and committed progenitors can display 

such remarkable plasticity under these 

different conditions.

OUTLOOK: Although the molecular mech-

anisms underlying cellular plasticity, fate 

conversion, and reacquisition of stem cell 

properties in committed and/or differenti-

ated cells still remain poorly understood, 

this cellular plasticity and lineage revers-

ibility may represent adaptive mechanisms 

for the self-preservation of epithelia to re-

pair body surfaces and linings in whatever 

ways possible following injuries. When gone 

awry, these repertoires become the curse 

of epithelial stem cells, contributing in 

major ways to human cancers.
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Coordinating stem cell activity to match tissue output. Stem cells (purple) often exist in 

two states, one more quiescent than the other. Primed stem cells are closer to activating niche 

signals (green). They typically respond faster and generate shorter-lived progenitors (orange), 

which also signal, fueling tissue production. Each stem cell niche must be responsive to the 

regenerative demands of tissue homeostasis and wound repair and adjust niche activating and 

inhibitory signals as necessary. 
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STEM CELL PLASTICITY

Plasticity of epithelial stem cells in
tissue regeneration
Cédric Blanpain1,2* and Elaine Fuchs3*

Tissues rely upon stem cells for homeostasis and repair. Recent studies show that the fate
and multilineage potential of epithelial stem cells can change depending on whether a
stem cell exists within its resident niche and responds to normal tissue homeostasis,
whether it is mobilized to repair a wound, or whether it is taken from its niche and
challenged to de novo tissue morphogenesis after transplantation. In this Review, we
discuss how different populations of naturally lineage-restricted stem cells and committed
progenitors can display remarkable plasticity and reversibility and reacquire long-term
self-renewing capacities and multilineage differentiation potential during physiological and
regenerative conditions. We also discuss the implications of cellular plasticity for
regenerative medicine and for cancer.

E
pithelia are cellular sheets often residing
at the interface between the external envi-
ronment and body organs, including skin,
gut, airway tracts, kidney, liver, mammary
glands, and prostate. They perform a di-

verse array of physiological functions, including
the ability to retain body fluids, absorb nutrients,
filter and eliminate toxic by-products of metab-
olism, and regulate body temperature. Each epi-
thelium is morphologically and molecularly suited
to its particular task, a feature that necessitates
specialized cell lineages.
Most epithelia replenish themselves through

a process called tissue homeostasis, in which the
number of cell divisions within a tissue com-
pensates for the number of cells lost (1). Tissue
homeostasis is ensured by the existence of stem
cells (SCs) located within specialized microen-
vironments, referred to as niches. Each niche is
tailored to accommodate the regeneration needs
of the tissue (2).
The skin epidermis and its appendages (hair

follicles, sebaceous glands, and sweat glands)
harbor spatially distinct SC niches. The inner-
most (basal) layer of interfollicular epidermis
(IFE) harbors proliferative progenitors, which
generate the stratified layers of the skin barrier.
Every few weeks, the IFE renews itself almost
entirely, placing a constant demand on its SCs.
Sebaceous glands (SGs) also turnover continu-
ously during adult homeostasis. By contrast, hair
follicles (HFs) cycle through bouts of hair growth

and degeneration, necessitating only periodic use
of SCs, whereas sweat gland (SwG) cells are most-
ly quiescent (Fig. 1A).
Other epithelia also have distinct require-

ments for tissue homeostasis, which must be
met by their resident SCs. In the small intestine,
the epithelium is organized into a crypto-villus
unit (Fig. 1B). The crypt is composed of co-
lumnar basal cells (CBCs) intermingled with
Paneth cells at the crypt base; an overlying com-
partment of transit-amplifying (TA) cells divides
several times and then terminally differentiates
to generate the absorptive and secretory cells

of the villus. Villus cells are subsequently shed
into the lumen (3), which results in continual
turnover of the entire crypt every 3 to 5 days.
CBCs, now known to be SCs, fuel the process.

Functionally validating stemness
of epithelial cells in vitro

Different methods have been elaborated through-
out the years to study the fate, renewal, and dif-
ferentiation potential of epithelial SCs. The first
functional demonstration of an epithelial SC
was made when methods were identified to
culture human epidermal keratinocytes under
conditions where they could be maintained and
propagated for hundreds of generations with-
out losing stemness (4). When grown from an
unaffected region of a burn patient, expanded
epidermal cultures could be stably engrafted
onto the damaged skin (5). Engrafted epider-
mis did not develop cancer or other abnor-
malities, which indicated that, under the right
conditions—in this case, coculture with irradiated
dermal fibroblasts—in vitro SC expansion and
differentiation can be achieved without delete-
rious consequence.
The requirement of dermal neighbors for suc-

cessful culturing of epidermal SCs highlights the
reliance of SCs on cross-talk with their niche
microenvironment. Indeed, by elucidating key
heterologous niche components and/or the
cross-talk involved, SCs from many different
epithelia have since been successfully cultured.
For intestinal stem cells (ISCs), it took BMP and
Notch inhibition together with Wnt activation
to recapitulate in vitro the long-term prolifera-
tive capacity and multipotency normally con-
ferred to ISCs by their niche (6). These studies
underscore the complexities of signaling cir-
cuitry governing SC behavior and the need to
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Fig. 1. Skin and intestinal epithelia: paradigms for epithelial stem cell biology. (A) Schematic
illustrating the epithelial lineages of hairy skin, color-coded here, which derive from at least four distinct
stem cell populations. (B) Schematic illustrating the location of intestinal crypt stem cells (green), giving
rise to TA cells and, in turn, four distinct cell types, three in the villus and one in the crypt.
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understand this to maintain SCs in the absence
of other heterologous cell types in vitro.

Identifying epithelial SCs in vivo
and probing their roles in
tissue homeostasis
HF homeostasis

Lineage tracing entails the genetic marking of
one or a group of cells in their normal physiolog-
ical context in a way that their subsequent pro-
geny retain marker expression. This method is
powerful in evaluating the contribution of SCs to
tissue homeostasis (1). The fluctuations of HFs
through synchronized bouts of hair growth and
inactivity present an interesting variation on this
theme (Fig. 2A). Before modern-day genetics, cells
with proliferative potential that spent extended
periods in quiescence were marked and monitored
by nucleotide analog pulse-chase experiments.
Such label-retaining cells (LRCs) reside at the
base of the resting HF, a region now referred to
as the bulge and its associated hair germ (HG)
(7). LRCs are SCs, as demonstrated by using a reg-
ulatable fluorescent histone to label LRCs and
monitor their cell divisions, as well as lineage
tracing to follow their fate (8–12) (Fig. 2B).
Both bulge and HG share many molecular fea-

tures of stemness, including expression of Lgr5
and Sox9 (12, 13). However, HG cells are always
the first to be activated at the start of each new
hair cycle, and they undergo more divisions than
bulge cells (13). Their close proximity to the un-
derlying mesenchymal signaling center, the
dermal papillae (DP), functions in dictating this
early response.
Activated HG cells do not maintain stemness

in vitro (13), and in vivo, they generate the TA
cells that produce the hair and its channel (14, 15).
By contrast, once the new hair cycle initiates,
some bulge cells leave their niche and form an
inverse proliferative gradient along the emerg-
ing outer root sheath (ORS). Early in the hair-
growth phase, TA cells stimulate remaining
bulge cells to proliferate and replenish the niche
(15). ORS cells closest to the bulge return to
quiescence soon thereafter and form a new
bulge and HG for the next cycle (12, 16). The
ability of bulge and HG SCs to generate the
seven different HF lineages underscores their
multilineage potency. Additionally, even though
bulge normally gives rise to HG, HG can re-
plenish an empty bulge niche, as shown by laser
ablation and live imaging (16), which under-
scores their close relation and capacity to inter-
convert when necessary (see below).
Although the above studies disclose insights

into the behavior and maintenance of cycling
HFs, lineage tracings reveal the existence of at
least two additional SC populations—SG and
infundibulum—within the noncycling HF segment.
SGs are maintained by unipotent Lgr6+Lrig1+

SCs that arise from Blimp1-expressing progen-
itors (17). In adults, Lgr6-expressing cells mark
and sustain SGs (18, 19), whereas Lrig1 expres-
sion extends to SCs fueling infundibulum ho-
meostasis (19) (Fig. 2A). One other SC population
in the upper bulge region has been suggested on

IFE SC tracing

Infundibulum 
SC tracing

IFE
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Bulge SC
tracing

Bulge SC
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DP

Bulge SC transplantation 

FACS isolation of bulge SC
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C
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34
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Fig. 2. Epidermal homeostasis is achieved through distinct pools of stem cells. (A) Schematic illus-
trating the outcome of five separate lineage tracings of Rosa26-floxed-stop-floxed–reporter mice. In each
experiment, a different inducible Cre recombinase was expressed in the desired SC or progenitor com-
partment. Because the Rosa26 promoter is generic, once Cre is activated and the stop codon is excised,
the marked cells and all their downstream progeny express the reporter. The results shown here illustrate
that each SC compartment is responsible for sustaining tissue homeostasis within a discrete skin domain.
(B) We purified fluorescently marked bulge SCs (green) by fluorescence activated cell sorting (FACS) and
cultured them as individual colonies of cells before transplanting the cells to a hairless mouse. The
experiment illustrated that a clone from a single bulge SC can regenerate the entire skin epithelium, which
documents the stemness and multipotency of the cells (9, 69, 70). We now know that when taken out of
their native niche and engrafted, epithelial SCs are often less restricted in their fates.
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the basis of its encasement by sensory nerve
sheaths (20). Whether these cells represent an
independent pool of functional SCs remains
unresolved.
A sharp boundary exists between infundibulum-

derived Lrig1+ cells and IFE (19), and little if any
contribution to the IFE has been observed by
the various adult SCs thus far identified in the
HF (9, 10, 19, 21–23) (Fig. 2A). This argues against
the prior view that a single “master” SC pop-
ulation presides over all skin lineages, as initially

postulated based upon embryonic Lgr6-Cre lin-
eage tracing (18). Indeed, the paradigm for
segmental-tissue governance by SC units has
ancient origins, as, like the HF, Drosophila in-
testinal epithelium is also compartmentalized
into discrete units maintained by separate SC
populations (24).

IFE homeostasis

The IFE is maintained by juxtaposition of small
units of proliferation containing stem and/or

progenitor cells (1). During embryogenesis, the
single layer of K14+ epidermal basal progenitors
undergoes a spindle orientation shift from >90%
symmetric to ~70% asymmetric cell divisions,
which leaves one daughter in the basal layer
and one suprabasal differentiating daughter cell
(25). Postnatally, SCs and transient progenitors
coexist within the IFE basal layer, and both
express K14 but can be distinguished by their
survival rate, mode of division, gene expres-
sion, and ability to respond to tissue damage
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Fig. 3. Interconversion and monoclonal drift of intestinal stem cells. (A) Lineage tracing of Lgr5+ cells (green) showing that these crypt cells give
rise to all intestinal lineages during homeostasis (38). (B and C) Intravital microscopy showing the colonization of the crypt from Lgr5 cells at bottom
center. Bmi1+ border (+4) cells either colonize the bottom of the crypt or give rise to TA cells (red) (42). (D) Lineage ablation of Lgr5+ (yellow X’s)
prompts Bmi1+ cells (red) to convert into Lgr5+ crypt cells, and thus gut homeostasis is not impaired (43). (E) Multicolor lineage tracing rapidly leads to
unicolor crypts, which demonstrate the monoclonal drift of ISCs (49).
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(26) (Fig. 2A). Basal progenitors targeted by
Ah-CreER (27, 28), Inv-CreER (26), and possibly
Axin2-CreER (29), divide mostly asymmetrical-
ly, whereas K14+ basal SCs are integrin-rich
and divide mostly symmetrically to generate
two long-lived daughters (26, 30). Although
the exact nature of the imbalance between SC
and progenitor division is not yet clear, each SC-
progenitor division must also be accompanied
by some differentiation, driven in part by Notch
signaling (31–34).

Crypt homeostasis:
A one-cell–winner competition

Ultrastructural analyses and proliferative ca-
pacity of the intestinal crypt led to the initial
hypothesis that CBCs are ISCs (35) (Fig. 1B).
Subsequent assignment of stemness favored
cells at the +4 position, given their mode of
chromosome segregation (36) and higher re-
sistance to DNA damage–induced cell death
(37). Lineage tracings of +4 CBCs with Bmi1,
mTER, and Hopx-CreER and 0→+3 CBCs with
Lgr5-CreER revealed that all crypt CBCs behave as
interconvertible multipotent ISCs (38–42) (Fig. 3,
A to C). This is further exemplified by diphtheria
toxin (DT)–targeted ablation of Lgr5-expressing
cells, which does not impair intestinal homeost-
asis (43) (Fig. 3D). Thus, despite their markedly
different regenerative demands, both HF and
intestine have spatially discrete interconvertible
SCs existing in quiescent and primed and/or
activated states (bulge and HG versus +4 and
0→+3 crypt cells).
Although it was initially proposed that all

Lgr5+ ISCs cycle rapidly (38), a recent study
using yellow fluorescent protein and histone
H2B label–retention assays reveals that ~20%
of Lgr5-expressing cells cycle less frequently,
exhibit a mixed ISC–Paneth cell transcriptional
profile, and differentiate into Paneth and neuro-
endocrine cells (44). Although these slow-cycling
cells do not contribute to crypt homeostasis dur-
ing physiological conditions, they can form organ-
oids in vitro with comparable efficiencies as rapidly
cycling Lgr5+ ISCs and can mediate crypt regen-
eration after injuries (44).
Despite these behavioral distinctions among

ISCs, their cellular dynamics within the crypt
systematically drift toward monoclonality (45–49).
Thus, over time, each crypt-villus unit derives
from a single ISC (Fig. 3E). The mechanism
leading to crypt monoclonality is thought to de-
rive from neutral competition between an equi-
potent pool of ISCs that includes both Lgr5 and
Bmi1-Hopx ISCs (49). In contrast to epidermis
(in which progenitors divide mostly asymmet-
rically), ISCs are thought to divide symmetrical-
ly and compete for niche space (48, 49). Based
initially on Lgr5 expression and mathematical
modeling (48, 49) and subsequently on a novel
method of continuous labeling (50), it is esti-
mated that between 5 and 16 Lgr5+ ISCs com-
pete with each other for niche space in a neutral
drift manner.
Live imaging of Lgr5-CreER lineage tracing

has recently enabled the visualization of these

displacements during ISC divisions. Ironi-
cally, with each division, ISCs reorganize their
position within the crypt, which underscores their
interconvertibility (42) (Fig. 3, B and C). In the
end, one ISC outcompetes the others. It will be
interesting to see in the future whether such com-
petition happens in other SC niches and how
the competition unfolds at a molecular level.
Crypt monoclonality underscores the multi-

lineage potential of ISCs. Increasing evidence
suggests that their fate choices are rooted at the
transcriptional level. Thus, equipotent progenitors
undergoing Notch-mediated lateral inhibition
quickly enable distinct—in this case, reversible—
cell fates to establish progenitor cell lineages as
either absorptive or secretory. Moreover, Atoh1,
a secretory-specific transcription factor expressed
by ISCs, controls lateral inhibition through Dll
genes and also drives expression of secretory
lineage genes, which suggests that intestinal

crypt lineage plasticity involves a lineage-restricted
transcription factor expressed by multipotent
ISCs (51).

Switch from multipotency to unipotency
in glandular epithelia

Mammary glands (MGs), SwGs, and prostate glands
are composed of an inner luminal layer, surrounded
by an outer layer of myoepithelial and/or basal
cells. Their morphogenesis begins late in embryo-
genesis and is completed postnatally.
As judged by lineage tracing, both MGs and

SwGs and their associated ducts originate from
K14-expressing multipotent embryonic epidermal
progenitors (52–54). Although it was recently
suggested that some bipotent SCs persist within
the myoepithelial layer (55), myoepithelial and
luminal lineages of MGs, SwGs, and prostate are
largely maintained postnatally by distinct pools of
unipotent SCs (52–54, 56–60) (Fig. 4A).
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Unipotent luminal cells

Unipotent 
luminal alveolar 
progenitors

Mammary and sweat glands during regeneration

Mammary gland during puberty and lactation
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Myoepithelial
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of myoepithelial SC
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CD29
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24

Fig. 4. Plasticity of
glandular epithelium during
regeneration. (A) Lineage
tracing reveals that during
puberty and pregnancy, MG
expansion is sustained largely by unipotent myoepithelial cells (red) and
luminal cells (green) (52). (B) After transplantation into mammary me-
senchyme, unipotent myoepithelial cells (red) from the MG or the SwG
acquire multipotency and reform a new gland replete with basal and luminal cells (52, 53).
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In the adult, both myoepithelial and luminal
epithelial SwG SCs display very little turnover
during homeostasis (53). By contrast, MG’s SCs

exert tremendous tissue-generating potential dur-
ing puberty and pregnancy, making them espe-
cially well suited for studying glandular SC biology

(52, 54). Heterogeneity within luminal and alveolar
compartments has been seen with Notch2-CreER

and Notch3-CreER lineage tracing (59, 60). Whether
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Fig. 5. Plasticity of epidermal cells during tissue repair. (A) Lineage tracing of IFE SCs (blue)
and progenitors (grey) during wound healing showing that SCs stably contribute to epidermal
repair while progenitor contribution is only transient (26). (B andC) Lineage tracing of bulge (B)
and infundibulumSCs (C)demonstrate that adult HFSCs are rapidly recruited to IFEduringwounding, but very fewcells survive and contribute to IFE homeostasis
after wound repair (19, 21). (D) After ablation of bulge cells (red X’s), hair germ (HG) cells (green) recolonize the bulge niche and mediate hair regeneration (16).
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these two luminal populations can interconvert
remains unknown.
During prostate development, clonal analyses

also suggest heterogeneity, this time in the basal
compartment. Bipotent and unipotent basal pro-
genitors have been identified, as well as basal cells
already committed to the luminal lineage (61).
Whether this apparent cellular heterogeneity re-
flects the existence of distinct progenitors or,
alternatively, stochastic fate decisions of a single
multipotent progenitor remains to be deter-
mined (61).
Altogether, lineage-tracing experiments per-

formed in different glandular epithelia show that
they initially develop from multipotent progeni-
tors which are progressively replaced by unipo-
tent SCs for adult tissue homeostasis and repair
(52, 53, 56, 61). However, despite similar histolo-
gies and SC behaviors, their multipotency →
unipotency switch occurs at different times during
development (52, 53, 56–58, 61).

Transient plasticity of epithelial
SC during tissue repair

Over evolution, homeostasis has been optimized
for different SC compartments to replace local
cells that die. However, if one SC compartment
is damaged, other SCs must be recruited to re-
pair the injury. A series of recent studies reveals
that the fate and differentiation potential of epi-
thelial cells can broaden during tissue regeneration
after wounding. In some cases, unipotent progenitors
acquire multipotency, whereas, in others, nor-
mally committed cells revert back to a SC-like
state to ensure tissue regeneration. The cellular
plasticity and reversibility observed in adult
epithelial tissues have not been associated
with “transdifferentiation” into completely un-
related fates but rather with contribution to the
repair of the tissue from which the cells orig-
inated. In this regard, the plasticity seems to arise
through a process of dedifferentiation and/or
redifferentiation.
How SCs respond to injuries and repair tissue

wounds varies dramatically depending not only
on the particular SC niche but also its proximity
to the wound. In SwG cells, for example, where
four different unipotent progenitors exist (53),
luminal and myoepithelial progenitors are mo-
bilized, but these SCs act unipotently in mediat-
ing tissue regeneration, at least under conditions
where luminal or myoepithelial progenitors are
selectively killed (53). Although these findings
illustrate the ability of different SC compartments
to mobilize in response to different types of in-
juries, each SC niche knows its own job and does
not carry out the job of other resident niches.
By monitoring the fate of early IFE prog-

eny during wound repair, signs of transient
plasticity begin to surface. Thus, although long-
lived IFE SCs are recruited to the wound region
and stably contribute to reepithelialization, short-lived
involucrin+ IFE progenitors also migrate to wound
sites. Within a month, most involucrin+-derived
progeny terminally differentiate (26), which sug-
gests that lineage reversion is not sustained long-
term (Fig. 5A). The apparent transient nature of

lineage reversion observed in IFE contrasts with
esophagus, where progenitors seem to change
their mode of proliferation in repairing inci-
sional wounds (62). Whether this difference is
attributed to the type and/or severity of wound
(incisional versus full thickness) or a funda-
mental difference in SC behaviors remains to be
addressed.
Transient plasticity has also been reported

for adult HF SCs in response to injury. In super-

ficial skin wounds, bulge and infundibulum SCs
migrate upward, proliferate, and participate in
the epidermal repair process (8, 19, 21, 22, 63)
(Fig. 5, B and C). Through mechanisms presently
unknown, migrating HF SCs lose HF markers
and adopt an IFE differentiation program. How-
ever, unlike neonatal skin, most of these cells
do not seem to persist long-term within IFE
(19, 63, 64). In this regard, they act more like
a cellular bandage, which perhaps analogously
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Fig. 6. Plasticity and interconversion into SCs during intestinal regeneration. (A and B) Dll1 lineage
tracing showing that, although Dll1+ cells (red) are transient and typically only differentiate into secretory
cells (black; interspersed in villus) during homeostasis (A), upon g-radiation–induced cell death (blue
X’s), Dll1+ TA cells revert and colonize the crypt (B) (82). (C) When intestine is depleted of Lgr5+ cells
(yellow X’s) and then exposed to g-radiation, regeneration is impaired, revealing a critical role for Lgr5+

cells in repairing extensive tissue damage (83).
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to involucrin+ IFE progenitors (26), are quick to
respond but are eventually replaced by IFE SCs
and their progeny.
Two relatively recent strategies to kill resident

SCs—either laser-ablating them or ablating them
through DT expression—have proven to be power-
ful methods to extricate SCs from their niches and
examine the consequences. Initially shown for
Drosophila germ SCs (65, 66), it is now well
established that when mammalian epithelial
SCs are ablated, the empty niches can recruit
and induce normally committed cells to prolif-
erate and revert back to a stemlike state.
A particularly elegant demonstration of this

paradigm was made by coupling live imaging
with laser-mediated cell lineage ablation of
different HF populations (14, 16). The cellular
plasticity within the bulge HF SC niche was
documented by illustrating that bulge and HG
cells can interconvert when one of these com-
partments is emptied (16, 67) (Fig. 5D). It is
noteworthy that cells located in the upper bulge
region, the so-called “junctional zone” SCs, could
also replenish the bulge niche after bulge SC
ablation (16). Although future studies will be nec-
essary to more closely examine the long-term
capacity to interconvert into each other’s fate and
restore tissue function after injury, these findings
capture the plasticity displayed by distinct skin
epithelial SC compartments after injuries.

The microenvironment controls the
fate of epithelial SCs

It has long been observed that when SCs are
taken out of context and transplanted, either
directly or after cell culture, they exhibit greater
multipotency in their new microenvironment.
Thus, upon engraftment to immunocompromised

mice, freshly isolated bulge cells (9, 68) or clonal
progeny of single bulge cells (69, 70) each generate
not only HFs, but also IFE and SGs long-term
(Fig. 2B). This is also true for isthmus and SG SCs
(71, 72). Analogously, when normally unipotent
SwG, MG, or prostate basal or myoepithelial SCs
are purified and engrafted de novo, they generate
entire functional glands (52, 53, 73–76).
When unipotent MG myoepithelial cells are

transplanted into mammary mesenchyme of
pregnant mice, they can reform a functional MG
(52) (Fig. 4B), which demonstrates the plasticity
of unipotent myoepithelial cells during regener-
ative conditions. Note that MG myoepithelial
cells can also generate MGs when engrafted to
shoulder pads, whereas SwG myoepithelial cells
generate SwGs in virgin mammary fat pads (53).
These findings suggest that for some adult pro-
genitors, once identity is established, they take
longer to respond to environmental and systemic
programming factors. By contrast, when progen-
itors form tissue de novo during embryonic de-
velopment, they have yet to receive the epigenetic
marks that restrict their fates.
Similarly, after culture in vitro, marked thymic

epithelial cells can be mixed with embryonic
thymus and transplanted underneath the kid-
ney capsule, where they integrate into the thymic
network and differentiate into functional thymic
epithelial cells (77). However, when the same
cultured thymic epithelial cells are transplanted
together with skin mesenchyme onto back skin,
they differentiate into all epidermal lineages
including HF and IFE (77). This plasticity in SC
behavior appears to become more permanent
with subsequent transplantations, illustrating
how the microenvironment can instruct these
cells to adopt very different fates.

A hint that adult epithelial cells may be able
to undergo permanent fate conversions in vivo
comes from monitoring IFE behavior after mas-
sive wounding. In this case, the IFE was reported
to regenerate HFs, which is something it never
does during homeostasis (78). It has long been
known that transgenic b-catenin stabilization, the
output of a Wnt signal, is sufficient to reprogram
K14+ IFE into HFs replete with their own DP (79).
Overexpressing the hedgehog pathway also stim-
ulates IFE to HF progenitor reprogramming, but
in this case, differentiation becomes suppressed at
the expense of hyperproliferation, which leads to
basal cell carcinoma (80, 81).

Reversing fates: Converting committed
progeny to SCs

Although the ability of adult epithelial SCs to
acquire different lineage fates seems remarkable,
several studies have recently suggested that
committed epithelial lineage cells may have
the capacity to acquire stemness. During normal
homeostasis in the intestine, Delta-like 1 (Dll1)–
expressing cells (82), or slow-cycling Lgr5+ cells
(44), are both short-lived Lgr5-derived progeny
committed to the secretory lineage. However,
after g-irradiation–induced tissue damage, these
normally committed Dll1+ progenitors appear to
revert back to ISCs (82) and contribute to in-
testinal regeneration (Fig. 6, A and B). Similarly,
when Dll1+ progenitors are purified and placed
in Wnt3a-supplemented cultures, they form
gut organoids containing Lgr5+ SCs and all
intestinal lineages (82), which supports the
idea that they revert into a stemlike state. How
Wnt signaling might influence the reversion
process in vivo is a yet-unaddressed intriguing
question. Whether these reserve cells are suffi-

cient to be functionally relevant in
the context of tissue repair is still
unclear, as g-irradiation–induced
intestinal epithelial regeneration
does not occur after Lgr5 ablation
(Fig. 6C) (83).
Another example of plasticity

stems from recent lineage tracing
of committed secretory cells in
the lung (84), which can revert
into stable and functional basal
SCs in vivo if all airway SCs are
ablated (85) (Fig. 7). In this case, it
was shown that these dediffer-
entiated cells can respond to epi-
thelial injury and repair injuries
equivalently to their endogenous
SC counterparts. By contrast, direct
contact with a single basal SC was
sufficient to prevent secretory cell
dedifferentiation, suggestive of neg-
ative cross-talk between SCs and
committed progeny. Overall, the
propensity of committed cells to de-
differentiate is typically inversely
correlated to their state of maturity.
The ability of a priori differenti-

ated cells to be reprogrammed and
interconvert into SCs has also been
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Fig. 7. Plasticity and interconversion into SCs during tracheal regeneration. During tracheal homeostasis,
basal cells (green) give rise to TA Clara cells (pink) and terminally differentiated ciliated cells (white). Lineage
ablation of basal cells (red X’s) induces the interconversion of Clara and/or ciliated cells into basal SCs (85).
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illustrated for stomach (86). The stomach epi-
thelium is composed of an upper part of rapidly
renewing cells, a middle zone, the isthmus that
actively proliferates, and a bottom zone that con-
tains two cell types (parietal and chief cells) with
very low cellular turnover (87). Lineage tracing
revealed that Sox2-expressing cells in the isth-
mus region are responsible for the homeostasis
of the glandular stomach, giving rise to all sto-
mach lineages (88). Through lineage tracing
using Troy-CreER to target differentiated pa-
rietal and chief cells (86), it was reported that
progeny of some Troy cells slowly expand
and reach the top of the gland after 6 months
of chase, which shows that these cells play only
a very minor role during homeostasis. However,
the Troy cells can be cultured long-term as
multipotent organoids in vitro and expand several-
fold after tissue damage in vivo, suggestive of
their ability to aid in repair of stomach inju-
ries (86).
After acute injuries, liver and pancreatic beta-

cell regeneration seems to involve self-duplication
of differentiated cells (89, 90). In contrast, chron-
ic and severe hepatic injuries stimulate mature
hepatocytes and/or biliary cells to dedifferen-
tiate into bipotent progenitor state–expressing
SC markers, such as Lgr5, that mediate liver
regeneration through their proliferation and
redifferentiation (91).
Altogether, these remarkable studies point to

the view that, under certain nonhomeostatic con-
ditions, differentiated cells dedifferentiate, re-
vert back to a SC-like fate, and participate in
tissue repair. In particular, this seems to happen
after severe injury, a situation where the tissue
must respond quickly and creatively to ensure
animal survival.

Reversibility of lineage differentiation
and SC plasticity during tumorigenesis

The plasticity of epithelial lineage commitment
and the ability of committed progeny to revert
back to SCs may have important implications
for tumorigenesis. In 1990, this notion was ini-
tially postulated by Bailleul et al., who observed
that mice expressing an oncogenic Hras driven
by a differentiation-specific promoter develop
papillomas after wounding (92). In an inter-
esting variation to this theme, normally fate-
restricted, unipotent basal and luminal SCs of
glandular epithelia reacquire certain features
of multipotent SCs during tumor progression.
For instance, tumor suppressor inactivation in
luminal MG cells can lead to the formation of
basal-like breast cancer (93), replete with het-
erogeneous expression of both basal and lu-
minal markers.
Similar observations have been made for

prostate cancer, where ablation of a tumor
suppressor gene in luminal SCs induces tumor
formation (57). Basal progenitors seem intrin-
sically more resistant to tumorigenesis, and
even when they undergo a fate transition into
luminal cells, the tumorigenic lesions that appear
are less aggressive than those originating directly
from luminal cells (56, 58).

Irrespective of underlying cause or mecha-
nism, the plasticity within the tissue hierarchical
organization is likely to have broader impli-
cations for tumor initiation and maintenance.
In the intestine, for instance, adenomas arise
from activating mutations in the Wnt/b-catenin
pathway. After a single oncogenic hit, only Lgr5/
Bmi1/prominin–expressing ISCs initiate tumor
formation (39, 94, 95), whereas targeting TA
progeny have either no effect or induce only
microadenomas (94). However, concomitant
activation of the Wnt pathway and another on-
cogenic hit cause normally committed TA cells
to revert to a SC-like state and induce tumor
formation (96).
Once initiated, these tumors may display hi-

erarchical organization, replete with tumor-
propagating cells (so-called cancer SCs), defined
functionally by their ability upon serial trans-
plantation to induce secondary tumors that re-
semble the parental tumor. Distinct populations
of cells with tumor-propagating capacity capa-
ble of interconversion have also been identified
within cancers (96–99), which raises the possi-
bility that upon transplantation, more committed
cells within a heterogeneous cancer may reac-
quire SC properties, analogous to the plasticity
observed in normal SCs after transplantation.
Consistent with this notion, non-SCs of human
basal breast cancers can switch to SC state,
depending on ZEB1, a regulator of the epithelial-
mesenchymal transition (100). This result suggests
a dynamic model where interconversion between
low and high tumorigenic states can occur, which
increases the potential for cancer progression.
Further studies will be required to define the
extent to which extent cell plasticity influences
cancer growth and relapse after therapy.

Conclusion

The examples provided in this Review have
highlighted the hierarchical and spatial orga-
nization of epithelial tissue homeostasis and the
important plasticity of progenitors and differ-
entiated cells during regenerative conditions.
This cellular plasticity and lineage reversibil-
ity may represent adaptive mechanisms for
the self-preservation of epithelia to repair body
surfaces and linings in whatever ways possible
after injuries. Across many different epithelia
subjected to a diverse array of injuries, the par-
adigm emerging is that the minimum number
of SCs needed to repair injuries will be activated
and recruited during the healing process. As in-
juries become more severe, and greater numbers
of SCs are depleted from their niches, more SCs
become mobilized to participate in wound repair.
When all SCs are exhausted, early progeny be-
come recruited, until eventually, with massive in-
juries, the tissue can no longer cope with repair.
Although the molecular mechanisms underlying
cellular plasticity, fate conversion, and reacqui-
sition of stem cell properties in committed and/or
differentiated cells still remain poorly understood,
these versatile built-in programs have major impli-
cations for regenerative medicine. On the flip side
of this coin, however, is that when gone awry,

these repertoires become the curse of epithe-
lial SCs, most of which contribute in major ways
to the most life-threatening of human cancers.
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