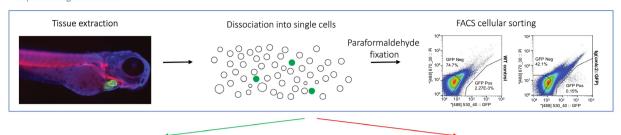
scientific data

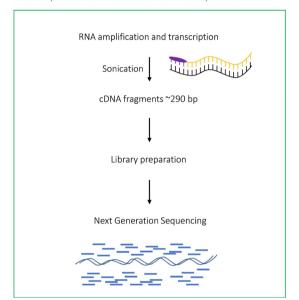
DATA DESCRIPTOR

OPEN Epigenomics and transcriptomics profiles of developing zebrafish heart cells

Gulrez Chahal^{1,2,3,16}, Michael P. Eichenlaub^{1,16}, Markus Tondl^{1,16}, Michał Pawlak⁴, Monika Mohenska^{1,5,6,7}, Lin Grimm⁸, Lauren Bottrell¹, Mark Drvodelic¹, Sara Alaei¹, Jeannette Hallab¹, Lisa N. Waylen^{1,2,3}, Jose M. Polo^{1,5,6,7}, Cédric Blanpain⁹, Nathan Palpant⁸, Fernando J. Rossello^{1,2,3}, Minna-Liisa Änkö^{1,10,11}, Peter D. Currie¹, Benjamin M. Hogan^{8,12,13}, Cecilia Winata¹⁴, Ekaterina Salimova¹, Hieu T. Nim^{1,2,3,15} № & Mirana Ramialison 1,2,3,15 №


cis-Regulatory elements (cREs) are essential for the spatio-temporal control of gene expression during development and disease. However, cRE activity is highly dependent on cell and tissue type. The developing heart is composed of several cell-types, predominantly cardiomyocytes. Therefore, cardiomyocyte-specific modelling is required to understand the cis-regulation of the developing heart. Zebrafish are an ideal model to study heart development, as they share several physiological features with the human heart during cardiogenesis. Here, we present a comprehensive cardiomyocytespecific repertoire of cREs isolated from zebrafish larvae. This data combines in vivo transcriptomics and epigenetic profiling, providing insights into cREs and their associated genes involved in heart development. We further perform transgenic reporter assays for the identified cREs associated with popdc2 and bmp10 genes, validating these genomic regions as cardiac regulatory elements. We share this comprehensive, reproducible cardiomyocyte-specific cREs resource as an interrogable web tool for understanding the epigenetic and transcriptomic mechanisms underlying heart development and emergence of congenital heart defects.

Background & Summary


cis-Regulatory elements (cREs), such as enhancers, promoters, insulators, and silencers, are essential for the spatio-temporal control of gene expression during development^{1,2}. Multiple studies have shown that mutations in regulatory regions disrupt embryogenesis^{3,4} and play an important role in disease pathogenesis⁵. In contrast to protein-coding regions, cREs are more challenging to identify in the genome. Nonetheless, cREs can be indirectly identified as genomic regions associated with specific histone and chromatin modifications.

¹Australian Regenerative Medicine Institute and Systems Biology Institute Australia, Monash University, Clayton, Victoria, 3800, Australia. ²Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, 3052, Australia. ³The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW) Melbourne, Melbourne, Australia. ⁴Institute of Hematology and Blood Transfusion, Warsaw, Poland. ⁵Adelaide Centre for Epigenetics, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, 5000, Australia. ⁶South Australian immunoGENomics Cancer Institute, Faculty of Health and Medical Sciences, The University of Adelaide, 5000, Adelaide, SA, Australia. ⁷Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia. ⁸Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, 4072, QLD, Australia. 9Interdisciplinary Research Institute (IRIBHM), Université Libre de Bruxelles (ULB), Bruxelles, 1070, Belgium. ¹⁰Faculty of Medicine and Health Technology, Tampere University, Tampere, 33100, Finland. ¹¹Hudson Institute of Medical Research, Melbourne, Victoria, 3168, Australia. 12 Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia. 13 Department of Anatomy and Physiology and the Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC 3000, Australia. ¹⁴International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland. 15 Department of Paediatrics, Royal Children's Hospital, MDHS Faculty, Flemington Road, The University of Melbourne, Melbourne, Victoria, 3010, Australia. ¹⁶These authors contributed equally: Gulrez Chahal, Michael P. Eichenlaub, Markus Tondl. Me-mail: hieu.nim@mcri.edu.au; mirana.ramialison@mcri.edu.au

Prepare biological material

RNA-seg: 3.5x10⁴ GFP+ and 5.0x10⁵ GFP- cell triplicates

ChIP-seq: 3.0x10⁴ GFP+ and 3.0x10⁴ GFP- cells

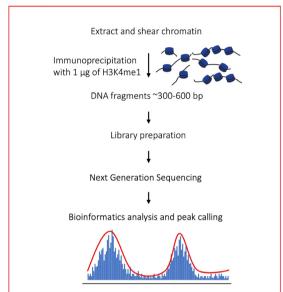


Fig. 1 Experimental workflow for preparing and collecting zebrafish materials for next generation sequencing at 72 hpf. Tissues extracted after de-yolking were dissociated into single cells and FACS-sorted into GFP+ and GFP- pools. RNA-seq libraries were obtained from N=6 samples, 2 conditions (GFP+ and GFP-) with 3 biological replicates. ChIP-seq libraries were obtained from N=2 samples (GFP+ and GFP-) and N=2 corresponding inputs. Libraries were then prepared, sequenced, and data analysed.

Several cREs have been identified as having a role in heart development and disease. These cardiac-relevant cREs were identified with chromatin immunoprecipitation, using antibodies against specific chromatin marks, followed by deep sequencing (ChIP-seq) (reviewed in⁶). ChIP-seq datasets from large-scale consortia such as those from ENCODE⁷ or the NIH Roadmap Epigenomics Mapping Consortium⁸, revealed more than 100,000 putative cREs that were active in embryonic and adult heart tissue in mice and humans. However, these datasets have been generated from a mixed cell population of whole organs and may not capture cREs that are only active in specific cell types.

Each cell type has a specific repertoire of cREs contributing to its cellular identity. To better understand and dissect the gene regulatory mechanisms involved in organ development and disease, a focus on the specific cell types constituting that organ is necessary. Cardiomyocytes are one of the critical structural and functional cell types in the heart and multiple cardiomyocyte-specific genes are known to be involved in cardiomyopathies 9,10 . Thus, elucidating the repertoire of cREs involved in the regulation of cardiomyocyte gene expression may be crucial for understanding the origin of cardiomyopathies and other heart related congenital diseases.

Zebrafish are an ideal model to study heart development, due to their optical transparency during development, and many shared physiological features with the human heart, such as heart rate and contractility dynamics¹¹. Several studies have investigated the regulatory repertoire in adult cardiomyocytes at various stages of zebrafish development^{12,13}. At 72 hours post fertilisation (hpf) the zebrafish heart has completed key developmental milestones such as tube morphogenesis, heart looping, and trabeculation, and further matures¹⁴. Here, we present a unique cardiomyocyte-specific repertoire of *c*REs active in the zebrafish embryonic heart at 72 hpf using a combination of transcriptomics and epigenetic profiling. We identified *c*REs associated with key genes known in several species to be essential for heart development and disease, and further validated the quality of the *c*REs repertoire by performing a transgenic assay for the *c*REs associated with *popdc2* and *bmp10* genes as cardiac regulatory elements.

Methods

Biological materials from zebrafish were prepared and collected for next generation sequencing using a custom, in-house protocol (Fig. 1).

Zebrafish husbandry. Tübingen (TU) zebrafish were maintained and bred at 26.5 °C. Embryos were raised at 28.5 °C and staged in hpf as previously described ¹⁵. The study was carried out in accordance with the provisions of the Australian National Health and Medical Research Council code of practice for the care and use of animals.

Dissociation. Cardiomyocytes were isolated from the cmlc2-GFP (Tg(*myl7*::GFP)) transgenic line ¹⁶. Larvae were collected at 72 hpf, immobilised with tricaine (MS222, 200–300 mg/l, Sigma, E10521), washed with cold HBSS, and dissociated with collagenase type II (Worthington, LS004174, 100 mg/ml use 1:100 in 0.1 M TrisHCl pH 7.5) for 30 min and 0.25% trypsin (Sigma, T4049-500 ML) for 10 min at room temperature. Dissociation was facilitated by gentle, slow pipetting with a 1000 µl pipette tip. Cell suspensions were subsequently filtered through 100 µm and 40 µm nylon meshes (Falcon[®] Cell Strainer, Corning, 352360 and 352340) by gentle centrifugation at 2000 rpm for 5 min. Cell number and viability were assessed using an automated cell counter (Counters[™], ThermoFisher Scientific, AMQAF1000). Cells were pelleted by centrifugation at 2000 rpm and resuspended in FACS buffer (1% BSA, 2% FBS in PBS).

After sorting, GFP-positive (GFP+) and GFP-negative (GFP-) cells were collected in 0.125 M glycine-PBS, frozen in liquid nitrogen and kept at $-80\,^{\circ}$ C until use. Cells were pelleted by centrifugation at 2000 rpm and either snap frozen in liquid nitrogen and kept at $-80\,^{\circ}$ C until use in RNA sequencing (RNA-seq) experiments or fixed with PFA (4% in PBS) and resuspended in FACS buffer (1% BSA, 2% FBS in PBS) for sorting, microscopy, and ChIP-seq experiments.

An equal volume of 4% formaldehyde (PFFA in PBS) was then added to cell suspension and cells were fixed for 10 min at room temperature. Reaction was stopped by an equal volume of ice-cold $0.25\,\mathrm{M}$ glycine in PBS, cells were then washed three times with $0.125\,\mathrm{M}$ glycine-PBS and resuspended in the same buffer. We collected a pool of 2,000-3,000 larvae to obtain the required numbers of $30,000\,\mathrm{GFP}+\mathrm{cells}$.

Flow cytometry. 72 hpf zebrafish larvae were pooled, dechorionated, dissociated into single cells, and FACS sorted. GFP + cardiomyocytes (typically 30k per sort) were compared to GFP- cells (a mix of all other cell types, typically millions of cells per sort).

Cell sorting was carried out using BD Influx Cell Sorter (BD Bioscience, 646500). Propidium iodide ($10\,\mu\text{g/mL}$ final concentration) was added to cell suspensions to exclude dead cells. To set the autofluorescence level, Cell Sorter was calibrated with GFP- cells before cell separation. GFP+ and GFP- cells were collected in 0.125 M glycine-PBS, frozen in liquid nitrogen and kept at $-80\,^{\circ}\text{C}$ until use. For RNA-seq analysis, the PFA fixation step was omitted, and cells were sorted into complete L-15 Leibovitz medium (Gibco, 11415064) containing 20% foetal bovine serum.

All sorts were performed with a 70 μ m nozzle and 60 psi sheath pressure at room temperature into low-binding tubes (Sigma, Z666505) containing 300 μ l RNAlater Stabilization Solution (ThermoFisher Scientific, AM7020). Gates were set using an age-matched single cell suspension of wild type larvae that had been processed in parallel. To discriminate GFP + cardiomyocytes from autofluorescent body cells (e.g. pigment cells of the eye or lateral line), compensation settings were applied and only events that were GFP + but showed no fluorescence in the red channel (DsRed [561] 593/40) for propidium iodide were sorted. Cells from wildtype zebrafish (TU) were used to assign the gate threshold, so that a maximum of 0.01% of the events were considered GFP+. The fraction of GFP + events in the cell suspension of the cmlc2-GFP transgenic larvae was typically around 0.15%. Droplets that contained both a GFP+ and a GFP- event were excluded, occurring at a frequency of about 20% of GFP + events. Laser settings GFP-488 (cardiomyocytes) and PI-555 were used to exclude dead and autofluorescent cells (such as melanocytes). FACS data was analysed with the FlowJo software.

The sorted material was pelleted by centrifugation at $3000 \times g$. Supernatant was removed by aspiration, and the pellet was snap-frozen in liquid nitrogen and stored at -80 °C.

RNA-sequencing. Triplicates of 3.5×10^4 GFP+ and 5.0×10^5 GFP- events were sorted into $300 \,\mu\text{L}$ RNAlaterTM Stabilization Solution (ThermoFisher Scientific, AM7020). The cells were pelleted by centrifugation, snap-frozen in liquid nitrogen, and stored at $-80\,^{\circ}\text{C}$. RNA extraction was performed using the RNEasy Plus Micro Kit (Qiagen) according to the instructions provided in the manual.

Integrity of the extracted RNA was assessed with BioAnalyzer (Agilent), and the concentration was measured with Qubit (Q32866, Qubit™ RNA HS Assay Kit Q32852, ThermoFisher Scientific). Triplicates of 35,000 GFP + yielded 1–4 ng of total RNA each. Triplicates of 500,000 GFP- events contained 88–96 ng total RNA. We used the whole sample of the GFP + events and 10 ng for the GFP- events to be linearly amplified using seven cycles of single primer isothermal amplification¹ followed by reverse transcription (Nugen Ovation RNA-seq system V2 using Nugen protocol M01206 v5, 2013). Of the resulting cDNA, 100 ng was sonicated using the Ultrasonicator to an average fragment size of ~290 bp. During the sequencing run, samples were diluted to the same concentration to prevent PCR bias. Libraries were prepared with the Ovation Ultralow System V2 following the Nugen protocol M01379 v1, 2014. Clusters were generated by c-bot clustering using 200 pM of the library pools (Illumina Protocol 15006165 v02 Jan 2016). Next-generation sequencing was performed using 50 bp single reads at Illumina HiSeq. 3000 (Illumina Protocol 15066493 Rev A, February 2015). Clustering resulted in 376.7 million reads, and 97.1% of reads had a quality score of >Q30. 58.4–66.5 million reads passed the quality filter for each sample. PhiX spike-in parameters were below the expected error rate (0.09%, expected <0.5%) and phasing/prephasing were 0.15/<0.04 (expected <0.4/<0.2).

Chromatin immunoprecipitation followed by next-generation sequencing. 30,000 GFP+ and 30,000 GFP- events were isolated by FACS following the dissociation and FACS-sorting protocols above with the following adaptations: after dissociation but prior to sorting, the cells were fixed with 1.8% paraformaldehyde (Sigma, #441244) in HBSS supplemented with 2% FBS at room temperature for 5 min, quenched with

0.125 M glycine final concentration (Amresco, #0167) on ice for 15 min. Live cells were sorted onto cover slips and stained with DAPI and propidium iodide to confirm that we sorted actual cells rather than just GFP + events. Although paraformaldehyde may have quenched the fluorescence, we were still able to sort a distinct fraction of GFP + cardiomyocytes. Furthermore, we supplemented PBS and the FACS buffer with 0.1% Tween-20 (Biochemicals, BIO-0777-500ML). Cells were sorted into 300 μ l FACS buffer (1% BSA, 2% FBS, 0.1% Tween-20 PBS, Phosphate-buffered saline), pelleted, snap-frozen with liquid nitrogen, and stored at $-80\,^{\circ}$ C. The frozen pellet of 30,000 sorted events was lysed in 100 μ l lysis buffer on ice for 10 min. 30,000 sorted GFP- events were used to optimise sonication conditions. We tested 10, 20, 30, 40, 50, and 60 cycles 20 sec ON/ 30 sec OFF (Bioruptor NGS, Diagenode). The amount of DNA in the sheared samples was assessed via Qubit measurement (Invitrogen, Qubit 2.0 Fluorometer). Sheared chromatin of 30,000 sorted events contains about 30 ng DNA. Fragment size (ideally between 300–600 bp but below 1,000 bp) was determined on a BioAnalyzer (Agilent). ChIP-seq sample quality was assessed using Bioanalyzer. The Bioanalyzer traces showed that DNA fragments were at optimal lengths (Supplementary Fig. S1). Selected read length was 51, with a minimum read depth of 26,714,871 and a maximum of 34,169,233 observed in the samples.

Chromatin immunoprecipitation was performed as described in Polo *et al.*¹⁹. One µg of H3K4me1 antibody (ab8895, Abcam) was added to the cell lysates. Samples were incubated with magnetic beads on a wheel at 4 °C overnight. Beads had been washed for 10 min rotating on a wheel at 4 °C with the following buffers: once with dilution buffer (165 mM NaCl, 0.01% SDS, 1.1% Triton X-100, 1.2 mM EDTA pH 8.0, 16.7 mM Tris HCl pH 8.0), twice with low salt buffer (150 mM NaCl, 0.5% sodium deoxycholate, 0.1% SDS, 1% Nonidet P-40, 1 mM EDTA pH 8.0, 50 mM Tris HCl pH 8.0), twice with high salt buffer (500 mM NaCl, 0.5% sodium deoxycholate, 0.1% SDS, 1% Nonidet P-40, 1 mM EDTA pH 8.0, 50 mM Tris HCl pH 8.0), once with TE buffer (0.25 mM EDTA pH 8.0, 10 mM Tris HCl pH 8.0).

Immunoprecipitated DNA was eluted by vortexing twice for 15 min at room temperature with 100 µl elution buffer (1% SDS, 100 mM sodium bicarbonate) each. DNA was de-crosslinked by adding NaCl to a final concentration of 0.3 M with subsequent incubation at 65 °C overnight, followed by purification (Qiagen MinElute PCR Purification Kit, #28004).

Libraries were prepared using the Clontech SMARTer ChIP-seq Kit (Protocol 021115). A single equimolar pool was made based upon size-adjusted qPCR quantitation results, followed by denaturation of 14 pM used for c-bot hybridisation and cluster generation in an Illumina HiSeq. 1500 High output run (Illumina Protocol 15006165 Rev K Oct 2012). Our samples were sequenced using 50 bp single reads (Illumina HiSeq High output Mode, Illumina Protocol 15035788 Rev D, Apr 2014). Due to the low starting amount, 18 cycles of amplification were used. The ChIP-seq input was processed and sequenced in the same manner as the ChIP-seq samples.

ChIP-seq data analysis. Processing of raw sequencing files. ChIP single read sequencing was performed on GFP+ cardiomyocytes and GFP- cells using an Illumina Genome Analyser. FastQC was performed to check the quality of the raw reads. Poor quality reads and adapters were trimmed using Trim galore which is a wrap script developed using Cutadapt (version 1.16)²⁰ and FastQC (Version 0.11.8)²¹. Illumina specific phred33 quality score cut off 28 was used with stringency of overlap with adapter sequence as 3 base pairs, and minimum read length cut off of 20 base pairs.

Alignment with reference genome and peak calling. Alignment of the quality filtered reads to reference genome Danio rerio (Genome assembly:GRCz10) Zv10 was performed using STAR (version 2.5.0a) 22 . The output SAM (Sequence Alignment/Map) file format generated, was converted to BAM and sorted and indexed. The enriched regions (or "peaks") were identified using MACS2 (version 2.1.0.20140616) 23 peak calling algorithm with default parameters and effective genome size as 1.50×10^9 and peak type as "broad". A comparison of peaks from the GFP+ and GFP- cells was performed to identify those specific to GFP+ cardiomyocytes using in-house developed script and stored in BED file format.

Gene ontology. LiftOver was used to convert genome coordinates from assembly Zv10 to Zv9. Genomic Regions Enrichment of Annotations Tool (GREAT)²⁴ was used to assign genes and the ontology terms associated with the peaks-associated genomic regions (assembly Zv9).

Data visualisation. To generate the signal density heatmap we used the deepTools 3.2.0 package, "computeMatrix", to calculate normalised read coverage around the peak centres with 1 kb flanking regions (± 1 kb). The signals were normalised to the library size, and then each H3K4me1 sample was normalised to the corresponding input. Heatmaps were generated using the function "plotHeatmap" from the deepTools 3.2.0 package.

RNA-seq data analysis. Processing of raw sequencing files. FASTQ files were quality trimmed for overrepresented sequences using Cutadapt (version 1.16)²⁰. The files were then processed for mapping and obtaining read counts with RNAsik²⁵, using default parameters. There were two sets of counts obtained, the first were the reads mapped to genome Zv9, and the second to genome Zv10. Read counts obtained from mapping to Zv10 were used for RNA-seq analysis and visualisations. Read counts obtained from mapping to Zv9 were used for RNA-seq analysis to obtain a set of differentially expressed genes (DEGs) and were then used to overlap with the genes associated with peaks of the ChIP-seq data sets.

Differential gene expression analysis and functional annotation. Genes with less than 2 counts per million (cpm) in at least 3 samples were filtered out and were then normalised with the TMM scaling method²⁶. Differential gene expression analysis was done with limma/voom (version 3.30.0)^{27,28} by pairwise comparison of the two different groups of cell types. A false discovery rate (FDR) < 0.05 was used to filter for differentially expressed genes.

L	ocus	Forward primer with SalI	Reverse primer with BamHI	Zv9 coordinates	Zv10 coordinates
b	mp10	GCCGATGTCGACACGTTT AACAGTGAACAGTTTGT	GCCGATGGATCCAAAGTGTA GTCGATTTGAACAGC	chr5:22992242-22992934	chr5:20705114-20705806
p	opdc2	GCCGATGTCGACAAAACT GGAGATGAGACGAATGT	GCCGATGGATCCTGAGAAAC AATTGAACACATGGT	chr9:22263074-22263569	chr9:21418860-21419355

Table 1. Primer sequences cloned into *SalI* and *BamHI* to capture the putative *c*REs.

David (version 6.8)²⁹ was used to perform gene ontology (GO) enrichment analysis, and for the identification of transcription factors that were differentially expressed. GOPlot (version 1.0.2)³⁰ was used for the visualisation of enriched GO terms, and transcription factors associated with enriched biological processes.

Comparisons of RNA-seq and ChIP-seq datasets. Genes associated to the peaks of the ChIP-seq datasets were overlapped with differentially expressed genes of the RNA-seq dataset. GO enrichment analysis on all the various overlaps was achieved with Metascape³¹. The overlaps between the ChIP-seq and RNA-seq datasets were visualised with Cytoscape (version 3.5.1)³².

Gene Ontology analysis. Differentially expressed genes have been associated with Gene Ontology (GO) terms²⁹ and their up- or downregulation visualised.

Transgenesis assay. Candidate selection. Candidate enhancer sequences were identified by intersection of the lists of genes upregulated in cardiomyocytes and the genes associated with cardiomyocyte-specific regulatory elements. *c*REs located <10 kb up- or downstream of the transcription start site and associated with the genes known to be expressed in cardiac tissue based on ZFIN database³³ were shortlisted.

The next step was to select the enhancer sequences in UCSC Genome Browser's GRCz11 assembly³⁴. Sequences were filtered using ChIP-seq data based on whole organism analyses for H3K4me1, H3K27ac, and H3K27me3 histone modifications³⁵.

GFP+ and GFP- peaks of the ChIP-seq dataset were overlapped with publicly available ChIP-seq data generated using whole zebrafish embryos H3K4me1, H3K27ac, H3K4me3, H3K36me3, and H3K27me3 histone modification peaks³⁵. We prioritised conserved sequences and excluded coding as well as repetitive sequences using the UCSC Genome Browser³⁴.

cRE cloning and in vivo analysis. Putative regulatory elements with ~300 bp flanking sequences were PCR amplified from genomic zebrafish DNA (Table 1) and cloned into *Sal*I and *Bam*HI sites of pTol2-mcFos-GFP reporter vector containing a minimal promoter from the mouse *cFos* gene^{36,37}.

Transposase mRNA was synthesised by *in vitro* transcription using the mMESSAGE mMACHINE SP6 Kit (ThermoFisher Scientific) and purified using RNeasy Plus Micro Kit (QIAGEN). Twenty pg of the circular reporter plasmid containing the putative regulatory element and 50 pg of transposase mRNA were co-injected into one-cell stage zebrafish embryos. The developing embryos were screened at 72 hpf for GFP expression. Imaging was carried out using a Nikon C1 (Inverted/Upright) confocal microscope equipped with a 10x objective and running NIS Elements Software (Nikon, Tokyo, Japan). For the construct, about 100 embryos were injected and assayed.

A consistent GFP expression pattern observed in at least 20% of injected embryos was considered as positive. The reporter vector alone showed expression in muscles and blood cells in F0 embryos (data not shown).

Data Records

All sequencing data (ChIP-seq and RNA-seq) have been deposited in the NCBI GEO database under the accession number GSE252152³⁸. The flow cytometry data is available on Zenodo at https://doi.org/10.5281/zenodo.10720218³⁹. The RNA-seq analyses results are available for interactive exploration at https://degust.erc.monash.edu/degust/compare.html?code=5812885a85be9051776433b1.

Technical Validation

Quality control of ChIP-seq libraries. We assessed the ChIP-seq libraries using various quality scores in FASTQC (Fig. 2A, Supplementary Fig. S2). The distribution of quality scores across all bases of the reads for the ChIP-seq samples (GFP+ and GFP-) fell in the high-quality zones (Fig. 2A, green zones). We generated four H3K4me1 samples: "30k pos", "30k pos input", "30k neg", and "30k neg input". We analysed the "30k pos" sample in comparison to "30k pos input", and similarly the "30k neg" sample in comparison to "30k neg input". Heatmaps for the H3K4me1 peaks of the GFP+ and GFP- (Fig. 2B,C) showed a typical profile of H3K4me1 signals, with depletion at the exact centre of active enhancers where nucleosome-free regions (NFRs) are located, and heavy H3K4me1 marking immediately flanking the centre. The peak calls were made in the intergenic, 5'UTR, 3'UTR, intronic and promoter regions in both GFP+ and GFP- samples as expected (Fig. 2D).

Quality control of bulk RNA-seq libraries. The quality score (Q30) for all the samples showed good base quality (Fig. 3A, green zones). Clustering analyses showed two distinct clusters of cardiomyocytes-specific GFP+ and GFP- samples (Fig. 3B,C). For the RNA-seq data, the top 20 GO terms associated with the differentially regulated genes were found to be enriched in heart function including heart looping, heart development, sarcomere organization, heart contraction, and neuronal functions (Fig. 3D,E).

Fig. 2 Quality metrics for ChIP-seq data. (A) FastQC quality control outputs for N=2 samples (GFP+ and GFP-) and two corresponding input libraries. (B,C) ChIP-seq signal density heatmaps for (B) GFP+ cells and (C) GFP- cells against the corresponding ChIP-seq inputs. All heat map densities ranged from +/-1.0 kb from the peak centre, with the average signal plots shown. (D) Pie charts representing the distribution of the ChIP-seq peaks in GFP+ (top) and GFP- (bottom) cells. TSS: transcription start sites; bp: base pairs; UTR: untranslated regions.

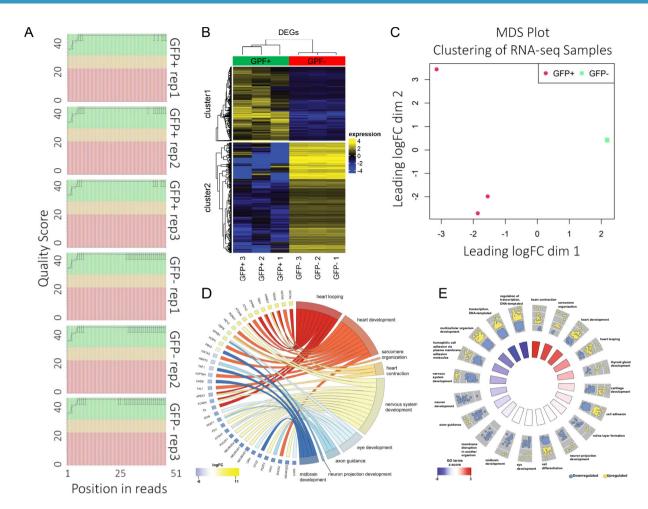
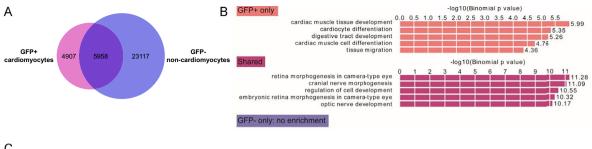
Usage Notes

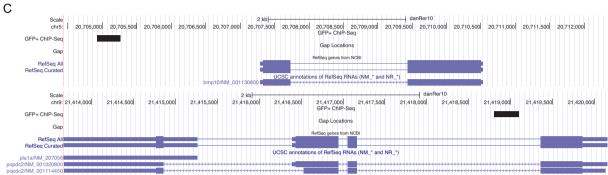
To study the relationship between cardiomyocyte-specific regulatory elements and predicted target genes in heart development, we have generated an interactive interface: https://ramialison-lab.github.io/pages/enhancer.html that allows biologists to query cardiomyocyte-specific regulatory elements, the associated genes, and their differential gene expression status in the RNA-seq analyses.

We also further studied gene ontology term enrichments of both ChIP-seq data. The predicted cREs were assigned to genes using Genomic Regions Enrichment of Annotations Tool (GREAT) software (see Methods section). Gene ontology (GO) analysis on each population revealed that the genes associated with cardiomyocyte-specific regulatory elements were annotated with heart functions: cardiac muscle tissue development, cardiomyocyte differentiation, and cardiac muscle cell differentiation, while genes associated with regulatory elements present only in the GFP- fraction showed no heart-related enrichment (Fig. 4A,B). This data confirms that the GFP+ fraction harbors regulatory elements important for cardiac function. This data can be further used to shortlist genes and enhancer candidates to study their role in heart development.

We further compared our ChIP-seq data with known heart-specific enhancers from the literature (Supplementary Fig. S4, Supplementary Table S1). Pawlak and colleagues previously performed ATAC-seq on nkx2.5+ and myl7+ cells in 72 hpf zebrafish⁴⁰. Our ChIP-seq data had \sim 15% overlapping peaks the ATAC-seq peaks (Supplementary Fig. S4A). Comparing our ChIP-seq peaks with curated heart-specific enhancers on two independent studies by Yuan *et al.* and Kosicki *et al.*^{41,42}, we further verified two heart-specific enhancers from our data (Supplementary Fig. S4B,C).

Another relevant application of the dataset was to test the identified cardiac regulatory elements for their putative enhancer activity, by exploring the regions with both ChIP-seq and RNA-seq signals in the zebrafish genome (Fig. 4C). Therefore, we cloned the shortlisted cREs associated with the popdc2 and bmp10 genes (see Methods) into Tol2-cFos-GFP vector and injected them into one cell stage embryos. The injected embryos were screened at 3 days post-fertilisation for GFP expression in the heart using immunofluorescence analysis. GFP expression in the heart was present in only 8.7% of control embryos, while GFP signal was detected in the hearts of 61.2% and 61.9% of the embryos injected with the vectors containing cREs associated with popdc2 and bmp10 respectively (Supplementary Fig. S5), validating these genomic regions as regulatory elements able to drive expression in the heart. The tissue-specific enhancer activity was further supported by


Fig. 3 Quality metrics for bulk RNA-seq data. (A) FastQC quality control outputs for N=3 samples (GFP+ and GFP-, N=3 biological replicates). (B,C) Clustering analysis of the RNA-seq samples, using (B) heat map and (C) multidimensional scaling (MDS) plot visualisation (note the 3 green squares are overlapping). Heat map of all differentially expressed genes of GFP+ and GFP- cells with FDR <0.05 (no LFC cut-off). (D) Chord diagram (circos diagram) of differentially expressed transcription factors and their association to cardiac (heart looping, heart development, sarcomere organization, heart contraction) and neuronal/ectodermal GO terms (nervous system development, eye development, axon guidance, neuron projection development, midbrain development). Most TFs that fall into cardiac GO terms are enriched, whereas most neuronal and ectodermal TFs are depleted. (E) Spider plot of top 20 enriched GO terms (p-value <0.05). Upregulated and downregulated genes are indicated by yellow and blue dots in each GO term. The colour of the inner trapezoids (rectangles) indicates whether the GO term overall is enriched (red) or depleted (blue). The GO terms for heart functions are enriched, GO terms for neuronal functions are depleted.

our prior work⁴³ where tissue-specific enhancer activities were demonstrated to generate *in vivo* phenotypes. To assist biologists in exploring our ChIP-seq and RNA-seq datasets, we have provided a searchable database (https://ramialison-lab.github.io/pages/enhancer.html) and interactive website for exploring the differentially expressed genes (https://degust.erc.monash.edu/degust/compare.html?code=5812885a85be9051776433b1, GSE252151, and Supplementary Table S2).

The heatmaps (Fig. 2B,C) have been normalised to library size to enable fair comparison between GFP+ and GFP- samples. While the limited sample size (n = 2 H3K4me1 samples, n = 2 inputs) precludes definitive conclusions, we hypothesise that the observed differences in signal strength (Fig. 2B,C) may reflect the enrichment of a specific cardiac cell population in the GFP+ sample, resulting in more distinct and focused H3K4me1 signal patterns compared to the heterogeneous GFP- population.

Our ChIP-seq data, while having limitations including high duplicate rates and low complexity, demonstrates potential as a preliminary screening tool for identifying biologically relevant histone marks. Despite these technical constraints, our integrated RNA-seq and ChIP-seq dataset could serve as a valuable resource for other laboratories, providing initial candidate targets that warrant further validation through targeted region and/or locus-specific ChIP experiments.

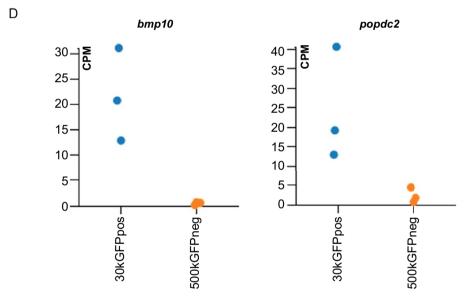


Fig. 4 ChIP-seq and RNA-seq data for biological discovery. (A) Venn diagram of regulatory elements in GFP+ and GFP- cells. (B) GO annotations for their associated genes. GFP + only has a cardiac signature, shared cREs are annotated with neuronal and ectodermal functions, and GFP- show no enrichment. (C) UCSC ChIPseq tracks representing the detected H3K4me1 peak (black rectangle), surrounding the popdc2 and bmp10 loci and (D) gene expression levels in the triplicate RNA-seq data (note for bmp10, the three orange dots are overlapping). CPM: counts per million.

Code availability

All source code used for the bioinformatics analyses and data visualisation are provided at https://github.com/ Ramialison-Lab/ZebrafishHeartEnhancers/. The database is available at https://ramialison-lab.github.io/pages/ enhancer.html.

Received: 22 March 2024; Accepted: 29 August 2025;

Published online: 07 October 2025

References

- 1. Long, H. K., Prescott, S. L. & Wysocka, J. Ever-Changing Landscapes: Transcriptional Enhancers in Development and Evolution. Cell **167**, 1170-1187 (2016).
- 2. Spitz, F. & Furlong, E. E. Transcription factors: from enhancer binding to developmental control. Nat Rev Genet 13, 613-626 (2012).
- 3. Uslu, V. V. et al. Long-range enhancers regulating Myc expression are required for normal facial morphogenesis. Nat Genet 46, 753-758 (2014).

- 4. Erceg, J. et al. Dual functionality of cis-regulatory elements as developmental enhancers and Polycomb response elements. Genes Dev 31, 590–602 (2017).
- 5. Corradin, O. & Scacheri, P. C. Enhancer variants: evaluating functions in common disease. Genome Med 6, 85 (2014).
- 6. Chahal, G., Tyagi, S. & Ramialison, M. Navigating the non-coding genome in heart development and Congenital Heart Disease. *Differentiation* 107, 11–23 (2019).
- 7. ENCODE Project Consortium An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57-74 (2012).
- 8. Bernstein, B. E. et al. The NIH Roadmap Epigenomics Mapping Consortium. Nat Biotechnol 28, 1045-1048 (2010)
- 9. Hassoun, R., Budde, H., Mügge, A. & Hamdani, N. Cardiomyocyte Dysfunction in Inherited Cardiomyopathies. *Int J Mol Sci*, 22 (2021).
- 10. Spielmann, N. *et al.* Extensive identification of genes involved in congenital and structural heart disorders and cardiomyopathy. *Nature Cardiovascular Research* 1, 157–173 (2022).
- 11. González-Rosa, J. M. Zebrafish Models of Cardiac Disease: From Fortuitous Mutants to Precision Medicine. *Circulation Research* 130, 1803–1826 (2022).
- 12. Gilsbach, R. et al. Distinct epigenetic programs regulate cardiac myocyte development and disease in the human heart in vivo. Nat Commun 9, 391 (2018).
- 13. Tsedeke, A. T. et al. Cardiomyocyte heterogeneity during zebrafish development and regeneration. Dev Biol 476, 259-271 (2021)
- 14. Hallab, J.C. et al. Towards spatio-temporally resolved developmental cardiac gene regulatory networks in zebrafish. Brief Funct Genomics (2021).
- Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B. & Schilling, T. F. Stages of embryonic development of the zebrafish. Dev Dyn 203, 253–310 (1995).
- 16. Huang, C. J., Tu, C. T., Hsiao, C. D., Hsieh, F. J. & Tsai, H. J. Germ-line transmission of a myocardium-specific GFP transgene reveals critical regulatory elements in the cardiac myosin light chain 2 promoter of zebrafish. *Dev Dyn* 228, 30–40 (2003).
- Kurn, N. et al. Novel isothermal, linear nucleic acid amplification systems for highly multiplexed applications. Clin Chem 51, 1973–1981 (2005).
- 18. Acemel, R. D. *et al.* A single three-dimensional chromatin compartment in amphioxus indicates a stepwise evolution of vertebrate Hox bimodal regulation. *Nat Genet* **48**, 336–341 (2016).
- 19. Polo, J. M. et al. Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells. Nature Biotechnology 28, 848–855 (2010).
- 20. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. 2011, 17, 3 (2011).
- 21. Andrews, S. Vol. 2023 (2010).
- 22. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15-21 (2013).
- 23. Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol 9, R137 (2008).
- 24. McLean, C. Y. et al. GREAT improves functional interpretation of cis-regulatory regions. Nat Biotechnol 28, 495-501 (2010).
- 25. Tsyganov, K., Perry, A. J., Archer, S. K. & Powell, D. RNAsik: A Pipeline for complete and reproducible RNA-seq analysis that runs anywhere with speed and ease. *Journal of Open Source Software* 3, 583 (2018).
- 26. Robinson, M. D. & Oshlack, A. A scaling normalization method for differential expression analysis of RNA-seq data. *Genome Biol* 11, R25 (2010).
- Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43, e47 (2015).
- 28. Law, C. W., Chen, Y., Shi, W. & Smyth, G. K. voom: Precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol 15, R29 (2014).
- 29. Huang, D. W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. *Nat Protoc* 4, 44–57 (2009).
- 30. Walter, W., Sánchez-Cabo, F. & Ricote, M. GOplot: an R package for visually combining expression data with functional analysis. Bioinformatics 31, 2912–2914 (2015).
- 31. Tripathi, S. et al. Meta- and Orthogonal Integration of Influenza "OMICs" Data Defines a Role for UBR4 in Virus Budding. Cell Host Microbe 18, 723–735 (2015).
- 32. Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. *Genome Res* 13, 2498–2504 (2003).
- 33. Howe, D. G. *et al.* ZFIN, the Zebrafish Model Organism Database: increased support for mutants and transgenics. *Nucleic Acids Res* 41, D854–860 (2013).
- 34. Raney, B.J. et al. The UCSC Genome Browser database: 2024 update. Nucleic Acids Res (2023).
- 35. Bogdanović, O., Fernández-Miñán, A., Tena, J. J., de la Calle-Mustienes, E. & Gómez-Skarmeta, J. L. The developmental epigenomics toolbox: ChIP-seq and MethylCap-seq profiling of early zebrafish embryos. *Methods* 62, 207–215 (2013).
- 36. Winata, C. L. et al. Genome wide analysis reveals Zic3 interaction with distal regulatory elements of stage specific developmental genes in zebrafish. PLoS Genet 9, e1003852 (2013).
- 37. Dorsky, R. I., Sheldahl, L. C. & Moon, R. T. A transgenic Lef1/beta-catenin-dependent reporter is expressed in spatially restricted domains throughout zebrafish development. *Dev Biol* 241, 229–237 (2002).
- 38. Tondl, M., Chahal, G., Eichenlaub, M.P., Nim, H.T. & Ramialison, M. GEO. https://identifiers.org/geo/GSE252152 (2024).
- 39. Chahal, G. T., Tondl, M., Waylen, L., Nim, H. T. & Ramialison, M. Zenodo. https://doi.org/10.5281/zenodo.10720218 (2024).
- 40. Pawlak, M. et al. Dynamics of cardiomyocyte transcriptome and chromatin landscape demarcates key events of heart development. Genome Res 29, 506–519 (2019).
- 41. Yuan, X. et al. Heart enhancers with deeply conserved regulatory activity are established early in zebrafish development. Nature Communications 9, 4977 (2018).
- 42. Kosicki, M. et al. VISTA Enhancer browser: an updated database of tissue-specific developmental enhancers. Nucleic Acids Research (2024).
- 43. Nim, H. T. et al. A cis-regulatory-directed pipeline for the identification of genes involved in cardiac development and disease. Genome Biology 22, 335 (2021).

Acknowledgements

This work was supported by grants from the State Government of Victoria and the Australian Government (National Health and Medical Research Council of Australia (NHMRC), Australian Research Council (ARC), and Heart Foundation Career Development Fellowship (1049980, MR)). This work was also supported by Rotary Global Grant, Rotary Foundation International (GG1637399) and Australian Genome Research Facility (AGRF) to GC. The Australian Regenerative Medicine Institute is supported by grants from the state government of Victoria and the Australian government. The Novo Nordisk Foundation Center for Stem Cell Medicine is supported by Novo Nordisk Foundation grants (NNF21CC0073729). MCRI is supported by the Victorian Government's Operational Infrastructure Support Program. The authors acknowledge Monash University

platforms and facilities: Monash FlowCore, Monash Micro Imaging, Micromon and FishCore Facility (Monash University, Victoria, Australia), for technical and scientific assistance. We thank Trevor Wilson (Hudson Institute of Medical Research) for his excellent assistance with the Next Generation Sequencing component of the project. We would like to thank Eileen Furlong and Emily Wong for their useful feedback on the manuscript and the study.

Author contributions

M.R. conceived of the study with inputs from J.P., C.B., N.P., F.R., M.A., P.C., B.H., C.W., E.S., M.P., H.T.N. and L.W. M.T. performed the zebrafish experiments with inputs from L.B., L.G., S.A. and J.H. G.C., M.E., M.M. and M.D. performed the bioinformatics analyses. G.C., L.W., E.S., M.T. and H.T.N. prepared the manuscripts with inputs from all co-authors. All authors read and approved the final manuscripts.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41597-025-05895-9.

Correspondence and requests for materials should be addressed to H.T.N. or M.R.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

© Crown 2025