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Abstract

Within a tumor, cancer cells exist in different states that are asso-
ciated with distinct tumor functions, including proliferation, dif-
ferentiation, invasion, metastasis, and resistance to anti-cancer
therapy. The identification of the gene regulatory networks under-
pinning each state is essential for better understanding functional
tumor heterogeneity and revealing tumor vulnerabilities. Here, we
review the different studies identifying tumor states by single-cell
sequencing approaches and the mechanisms that promote and
sustain these functional states and regulate their transitions. We
also describe how different tumor states are spatially distributed
and interact with the specific stromal cells that compose the
tumor microenvironment. Finally, we discuss how the understand-
ing of tumor plasticity and transition states can be used to develop
new strategies to improve cancer therapy.
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Introduction

Solid cancers are composed of tumor cells (TCs) and their stroma,

which includes cancer-associated fibroblasts (CAFs), vascular cells,

extracellular matrix, and immune/inflammatory cells. TCs do not

usually constitute a homogeneous cell population. They are rather

composed of functionally heterogeneous populations that present

different cellular states dynamically evolving over time. The notion

that tumors are composed by heterogeneous subpopulations of TCs

with different histology, karyotype, growth rates, enzymes, and

response to cytotoxic drugs has been known for decades (Heppner,

1984). Initially, tumor heterogeneity has been attributed only to

genetic diversity arising from clonal evolution, which is discussed in

the review by Swanton and colleagues (Vendramin et al, 2021). This

gene-centric hypothesis has been challenged by the discovery of

functional diversity of TCs. Functional assays, such as in vitro

clonogenic assays, transplantation, and in vivo lineage tracing, have

suggested that some tumors are hierarchically organized and present

a population of cells called cancer stem cells (CSCs) that sustain

tumor growth by giving rise to TCs with more restricted proliferative

potential (Lapidot et al, 1994; Beck & Blanpain, 2013; Prager et al,

2019). These two concepts are not mutually exclusive, as populations

of CSCs can exhibit substantial intra-tumoral genetic heterogeneity

(Shipitsin et al, 2007). Historically, similar to the primary tumors,

metastasis-initiating cells have been initially dominated by the genetic

model of tumor evolution. Although additional driver mutations can

be found during metastatic dissemination (Yates et al, 2017; Nayar

et al, 2019), metastases usually do not present driver mutations

exclusively found in metastasis and not in primary tumors, suggest-

ing that other mechanisms besides genetic evolution can drive the

metastatic dissemination (Birkbak & McGranahan, 2020; Massague &

Ganesh, 2021). Growing evidence indicates that intra-tumoral hetero-

geneity in primary tumors and metastasis is not only determined by

genetic and epigenetic features in cancer cells but can also be influ-

enced by the tumor microenvironment.

Historically, researchers had studied functional heterogeneity in

cancers using different functional assays. Inspired by developmental

and stem cell biology, cancer biologists had identified cell surface

markers that are heterogeneously expressed within a given tumor

and separated TCs into distinct subpopulations and assessed their

clonogenic and differentiation potential by transplantation experi-

ments using limiting dilutions. Using this approach, Dick and collea-

gues demonstrated for the first time, the existence of a small

population of leukemic cells that were much more efficient at form-

ing secondary leukemia than the bulk of cancer (Lapidot et al, 1994;

Bonnet & Dick, 1997) and called this subpopulation leukemic stem

cells. This approach has been used to identify, characterize func-

tionally and molecularly CSCs in many different cancers (Al-Hajj

et al, 2003; Nassar & Blanpain, 2016). Whereas isolation followed

by transplantation in vivo or clonogenic assays in vitro had been

widely used to characterize CSCs, these assays have their limitations

as cancer cells are dissociated from their surrounding microenviron-

ment and transplanted very often in a heterotopic site. To study

tumor heterogeneity within its native microenvironment,

researchers have used lineage tracing to label TCs in situ and stud-

ied their ability to change fate and their clonogenic potential over

time. These studies in different types of solid tumors have demon-

strated that not all TCs are equal and clonogenic, and only a small
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population survives long term and fuels the tumor growth (Nassar &

Blanpain, 2016). Other methods such as pulse-chase experiments

have been used to characterize proliferation heterogeneity within

the tumor (Fillmore & Kuperwasser, 2008; Pece et al, 2010; Roesch

et al, 2010; Schober & Fuchs, 2011; Brown et al, 2017). The same

approaches using cell surface markers have been used to identify

TC populations with increased metastatic potential called

metastasis-initiating cells (Celia-Terrassa & Kang, 2016; Pascual

et al, 2017; Massague & Ganesh, 2021) or to deconvolute tumor

heterogeneity occurring during epithelial-to-mesenchymal transition

(EMT) and identify TC populations enriched for metastasis-initiating

cells (Pastushenko et al, 2018).

However, these approaches are biased toward the availability of

cell surface markers that recognize the different TC populations, or

their physical or chemical characteristics such as the expression of

aldehyde dehydrogenase (Moreb, 2008; Luo et al, 2012). Neverthe-

less, bulk RNA and DNA sequencing of human tumors allowed the

identification of genetic and transcriptional heterogeneity between

different tumors, giving rise to more clinically relevant, molecular-

based classifications (Verhaak et al, 2010; Cancer Genome Atlas,

2012a, 2012b, 2015; Brennan et al, 2013). However, bulk sequenc-

ing approaches average the genetic and expression profiles of the

different tumor subpopulations and are not very powerful in identi-

fying the distinct tumor states that compose the tumors.

The development of new technologies based on single-cell

sequencing opened new avenues to capture different tumor states

and understand intra-tumoral heterogeneity with unprecedented

resolution and scale. Single-cell RNA sequencing (scRNA-seq)

allows to define the transcriptome of individual TCs and to identify

clusters of cells (cell states) presenting similar gene expression pro-

files within a tumor. During the last years, several tumor states,

including proliferative, differentiated, invasive, hypoxic, metastatic,

and stress-like states, have been identified and functionally charac-

terized. Each tumor state is associated with different hallmarks of

cancer, such as tumor progression, metastasis, and resistance to

therapy. Single-cell profiling also allows the identification of stromal

cells including CAFs, immune cells, and endothelial cells that

compose the tumor microenvironment (Fig 1). Single-cell “-omics”
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Figure 1. Single-cell RNA sequencing to unravel tumor heterogeneity.

Schematic showing how tumors derived from different models can be used for transcriptional analysis at the single-cell level of both malignant and stromal cells. CAF:
cancer-associated fibroblasts; EMT: epithelial-to-mesenchymal transition; GEMM: genetically engineered mouse model; PDX: patient-derived xenograft.

2 of 17 The EMBO Journal e109221 | 2021 ª 2021 The Authors

The EMBO Journal Rolando Vegliante et al



(genomics, transcriptomics, epigenomics, and proteomics) technolo-

gies are evolving at a very rapid pace (see Box 1). In this review, we

will summarize the most recent single-cell studies that allowed the

identification of tumor functional states (Table 1), their spatial orga-

nization, and their dynamics during tumor progression, metastasis,

and response to therapy.

Tumor states in solid tumors

Certain tumors hijack the developmental programs of normal tissues

and mimic their cellular hierarchy leading to TCs with high self-

renewing capacities known as CSCs and TCs that are more differen-

tiated and have decreased tumor-initiating capacity. Single-cell

sequencing studies have described the similarities of tumor subpop-

ulations and developmental lineages.

Developmental programs in brain tumors
A pioneering work using scRNA-seq identified different tumor states

in primary human glioblastomas. These states include cycling,

quiescent, hypoxic, and a continuum of stem-like tumor states.

Interestingly, malignant cells invading the surrounding tissue

express a transcriptional program characterized by low hypoxia,

low proliferation, and high migratory capacity (Patel et al, 2014). In

glioblastoma, four distinct tumor states were found that recapitulate

the different neural cell types including neural progenitor-like,

oligodendrocyte-like, astrocyte-like, and mesenchymal-like. Each

state contains proliferative cells, although higher proliferation is

observed in the neural- and oligodendrocyte progenitor-like states

(Neftel et al, 2019). Mass cytometry, immunostaining, and

xenografting experiments demonstrated that among the different

glioblastoma subpopulations, glial progenitor cells are more prolifer-

ative and possess higher tumor formation capacity than TCs with

astrocyte and neuronal lineage differentiation. This highly prolifera-

tive state is also the most resistant to the alkylating agent temozolo-

mide (Couturier et al, 2020). Importantly, specific genetic

alterations promote the relative abundance of the different tumor

states. For example, mutations in EGFR promote the astrocyte-like

state abundance, whereas TCs harboring chromosome 5q deletion

preferentially differentiate into a mesenchymal-like state.

In human IDH1 or IDH2 mutant oligodendroglioma and astrocy-

toma, the majority of cancer cells differentiate along two glial tran-

scriptional programs: oligodendrocytes (characterized by OLIG1,

OLIG2, or OMG expression) and astrocytes (characterized by APOE,

ALDOC, or SOX9 expression) (Tirosh et al, 2016b). In addition, a

rare subpopulation of undifferentiated TCs, associated with a neural

stem cell expression program, is enriched for proliferation signature,

suggesting that this stem-cell-like population fuels tumor growth

(Tirosh et al, 2016b). Further analysis of scRNA-seq data showed

that these undifferentiated TCs exhibit a strong similarity in gene

expression profile between the two tumor histotypes, raising the

possibility of a shared cell of origin for IDH-mutant oligoden-

droglioma and astrocytoma (Venteicher et al, 2017). Similarly, in

H3K27M glioma, the stem-like state proliferates more actively and

Box 1

Single-cell sequencing has rapidly evolved over the last 10 years and has revolutionized the ability to interrogate tumor heterogeneity. These approaches
enable to investigate the transcriptional, genomic, epigenomic, and proteomic features of thousands of individual cells within a tumor. Although scRNA-
seq has largely contributed to the identification of TC states, analysis of other layers of cell features, either on their own or integrated with transcrip-
tomic interrogation, have greatly expanded our understanding of cancer biology. Single-cell whole-genome sequencing (scWGS) is a powerful tool to
decipher cell heterogeneity in a biological sample. Several single-cell genome amplification techniques have been developed, such as DOP-PCR, multiple
displacement amplification (MDA), multiple annealing and looping-based amplification cycles (MALBAC), and linear amplification via transposon insertion
(LIANTI). These techniques can accurately call copy number variations, indels, and single-nucleotide variations (Navin, 2015; Mallory et al, 2020). High-
dimensional single-cell DNA sequencing in a clinical context is limited by its high cost. One option is to apply single-cell targeted sequencing of the
genetic aberrations of interest identified by bulk sequencing. Techniques of such type carry the bias of seeking pre-identified mutations leaving out the
discovery of new ones (Rodriguez-Meira et al, 2019). Epigenetics plays a pivotal role in cell biology as different modifications on DNA (e.g., methylation)
and histones, as well as varying chromatin accessibility and organization, tune gene expression (Kelsey et al, 2017). Single-cell methods that analyze the
epigenetic landscapes of thousands of single cells have rapidly expanded. Single-cell chromatin immunoprecipitation sequencing (scChIPseq) detects
direct binding of transcription factors onto DNA (Rotem et al, 2015); high-throughput chromosome conformation capture (Hi-C) determines high-order
chromatin organization (Nagano et al, 2015); DNA modifications such as methylation can be identified by single-cell bisulfite sequencing (sc-BSseq) or
inferred by the use of restriction enzymes whose activity depends on the methylation state of DNA (Guo et al, 2013; Cheow et al, 2015). Single-cell
chemical-labeling-enabled C-to-T conversion sequencing (CLEVER-seq) enables identification of 5-formycytosine (5fc), where C is read as a T after specific
chemical labeling (Zhu et al, 2017). A wide application in single-cell -omics has been found for the assay for transposase-accessible chromatin sequenc-
ing (ATAC-seq) that interrogates chromatin accessibility based on the ability of the Tn5 transposase to add sequencing adapters into open chromatin
regions (Buenrostro et al, 2015; Cusanovich et al, 2015). As opposite to single-cell technologies detecting nucleic acids, analysis of the proteome in a cell
progresses at a slower pace. Mass cytometry, commercialized as CyTOF (mass cytometry by time of flight), relies on metal-isotope-conjugated antibodies
for immunolabeling, and analyses them by mass spectrometry (MS) and has emerged as a powerful tool in the field of single-cell proteomics as it can
measure 40 to 100 parameters in each cell (Bandura et al, 2009; Bendall et al, 2011). Increased throughput and peptide quantification are the advan-
tages of an improved mass cytometry-based platform called SCoPE-MS (Budnik et al, 2018). Based on the same technology, imaging CyTOF has been
developed and can be applied to tissues on slides to combine proteomics and spatial architecture (Giesen et al, 2014). Similarly, MALDI imaging mass
spectrometry relies on a matrix that coats a tissue sections, extracts molecule from the tissues, and generates mass spectra that can be matched with
histological staining of the section (Norris & Caprioli, 2013). Importantly, many of the techniques described above have been integrated into single-cell
multi-omics. Generally, scRNA-seq is included in most scMulti-omics studies as gene expression data represent a necessary tool to decipher cell
processes. Simultaneous characterization of different layers within a single cell has already taken off and will continue to provide valuable information
about cell identities. For a detailed and comprehensive discussion on the integrative approaches used for scMulti-omics, please refer to reviews (Ma
et al, 2020; Longo et al, 2021).
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Table 1. Selected studies that used single-cell RNA sequencing to understand tumor cell states.

Reference/Year Species Model Tumor type

scRNA-seq analysis on

Tumor
cells

Stromal
cells

Kinker et al (2020) Human Cancer cell lines 198 cell lines from 22 cancer subtypes X

Kumar et al (2018) Mouse Syngeneic tumors Melanoma, breast, lung, colon
carcinomas, and fibrosarcoma

X X

Cook and Vanderhyden (2020) Human Cancer cell lines Lung, prostate, breast, and ovarian
cancer cell line

X

Chung et al (2017) Human Primary, metastatic lymph nodes Breast cancer X X

McFaline-Figueroa et al (2019) Human Cancer cell line X

Davis et al (2021) Human PDX, tumor, lymph node, and
lung metastasis

X

Deshmukh et al (2021) Human Cancer cell line X

Karaayvaz et al (2018) Human Primary tumors Triple-Negative Breast Cancer X X

Pal et al (2021) Human (healthy, pre-neoplastic, tumoral)
tissue + lymph nodes

Mammary duct and breast cancer X X

Li et al (2017) Human Primary tumors CRC X X

Lee at al. (2020) Human Primary tumors X X

Gojo et al (2020) Human Primary tumors, PDX Ependymoma X X

Gillen et al (2020) Human Primary tumors X

Neftel et al (2019) Human Primary tumors Glioblastoma X

Patel et al (2014) Human Primary tumors X

Pine et al (2020) Human Organoids, PDX x

Filbin et al (2018) Human Primary tumors, PDX Glioma X

Venteicher et al (2017) Human Primary tumors Gliomas (Oligodendroglioma
and Astrocytoma)

X

Hovestadt et al (2019) Human Primary tumors Medulloblastoma X

Tirosh et al (2016) Human Primary tumors Oligodendroglioma X

Yao et al (2020) Mouse 4-NQO induced primary tumors Esophageal SCC X

Wu et al (2018) Human Primary tumors Esophageal SCC and ADC X

Puram et al (2017) Human Primary tumors and metastatic
lymph nodes

Head and Neck cancer X X

Chen et al (2020) Human Primary tumors Nasopharyngeal carcinoma X X

Zhao et al (2020) Human Primary tumors X X

Kim et al (2020) Human Primary tumors, pleural fluids, lymph
node, and brain metastasis

Lung adenocarcinoma X X

Laughney et al (2020) human primary tumors + metastasis X X

Quinn et al (2021) Human PDX cancer cell lines, primary tumors,
and metastasis

Lung cancer X

Ireland et al (2020) Mouse Cell lines derived from primary tumors Small Cell Lung Cancer X

Tirosh et al (2016) Human Primary tumors and lymph
nodes + distant metastasis

Melanoma X X

Wouters et al (2020) human cell lines derived from primary tumors X

Pastushenko et al (2018) Mouse Primary tumors Skin SCC X

Ji et al (2020) Human Primary tumors, PDX X X

Hu et al (2020) Human Primary tumors Ovarian and endometrial cancer X X

Izar et al (2020) Human Cells isolated from ascites Ovarian cancer X X

Peng et al (2019) Human Primary tumors Prostate carcinoma X
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presents higher clonogenic capacity upon transplantation as

compared to the more differentiated states (Filbin et al, 2018).

Medulloblastoma, a childhood cerebellar tumor, comprises four

molecular subgroups associated with different oncogenic mutations

and transcriptional landscapes (Liu et al, 2020). WNT, SHH, and

Group 3 Medulloblastoma contain both stem-like and more differen-

tiated tumor states. The differentiation of the SHH subgroup resem-

bles cerebellar granule neurons, whereas Groups 3 and 4 resemble

neuronal-like cells in different proportions (Hovestadt et al, 2019).

In ependymoma, a similar hierarchical organization of cell states

including stem-like and differentiated tumor states was found. The

stem-like state is associated with a poorer prognosis compared to

tumors with differentiated-like states (Gojo et al, 2020). Further

investigation of ependymoma subgroups revealed the presence of

two subpopulations with ependymal differentiation features (cilia

function and cellular transport) and an undifferentiated subpopula-

tion associated with clinical aggressivity (Gillen et al, 2020).

Overall, it appears that most brain tumors follow well-defined

hierarchical architectures, with stem-like tumor states driving tumor

growth and giving rise to more differentiated TCs. Understanding

the molecular mechanisms underlying differentiation of TCs can be

exploited as a valuable strategy to hinder tumor growth and lead to

clinical benefits. Inspired by the treatment of acute promyelocytic

leukemia with retinoic acid and arsenic trioxide that triggers

leukemia cell differentiation and disease elimination (de The, 2018),

new insights in the molecular basis of differentiated tumor states

would help designing pro-differentiation therapies in solid tumors.

Normal differentiation and tumor states
As with brain tumors, pairwise scRNA-seq analyses of tumors and

matched healthy tissues show that the different tumor states recapit-

ulate the spectrum of differentiation found in the normal tissue. For

example, in colorectal cancer, tumor states include enterocytes,

goblet cells, and stem cells (Li et al, 2017). In normal fallopian tube

epithelium, which is the cell of origin of ovarian cancer, four dif-

ferent secretory cell types, including EMT-like cluster and ciliated

cell cluster, were identified by scRNA-seq. The ciliated subtype is

enriched in low-grade ovarian cancer, whereas the EMT subtype is

associated with high-grade serous ovarian cancer and poor overall

survival (Hu et al, 2020). In triple-negative breast cancer (TNBC),

clustering of single cancer cells using bulk RNA-seq-derived signa-

tures of normal basal, luminal progenitors, and differentiated lumi-

nal cells of the mammary gland showed that most TCs express the

luminal progenitor signature, consistent with these cells being the

cell of origin of TNBC (Lim et al, 2009; Molyneux et al, 2010; Van

Keymeulen et al, 2015). Similar results were obtained with unsuper-

vised clustering showing the presence of a basal-like signature and

that most tumors contain a subpopulation resembling luminal

differentiated cells (Karaayvaz et al, 2018). Another study analyzed

the cellular composition and heterogeneity of non-pathologic

mammary gland and breast cancers in a large cohort of patients.

Epithelial cell populations do not differ across healthy patients,

whereas the tumor microenvironment composition—particularly

fibroblasts—changes between pre- and post-menopausal subjects.

The largest proliferative population is found in TNBC rather than

ER+ and Her2+ breast cancers. EMT-expressing TCs did not appear

as a discrete cluster but were scattered throughout different subclus-

ters across the three breast tumor subtypes. Among EMT-related

genes, TNBCs and ER+ tumors expressed higher vimentin than

HER2+ (Pal et al, 2021).

Pancreatic ductal adenocarcinomas display two types of ductal

tumor states expressing typical ductal lineage markers. Neverthe-

less, the type 2 ductal tumor state expresses much higher levels of

pancreatic adenocarcinoma markers, whereas type 1 ductal cells

express higher level of genes regulating normal pancreatic func-

tions, including digestion, pancreatic secretion, and bicarbonate

transport. However, these cells can be further clustered into two

groups, one resembling normal ductal cells and the other similar to

malignant type 2 ductal cells (Peng et al, 2019). Lineage trajectory

analysis suggests that type 1 ductal cells are the cells of origin giving

rise to type 2 malignant TCs. The malignant ductal cell markers

were used to cluster human pancreatic tumor samples. Proliferative

ductal markers are more enriched in two of the three pancreatic

adenocarcinoma clusters that are associated with lower survival

rate. CDK1, PLK1, and AURKA are markers of proliferative ductal

cells, and the pancreatic cancer cell line MIA PaCa-2 growth was

suppressed by inhibitors targeting these three proteins (Peng et al,

2019). ScRNA-seq of normal lung epithelia and lung adenocarci-

noma identified four common differentiated lineages (including

alveolar epithelial cell types 1 and 2, ciliated and club cells). In lung

adenocarcinoma, two new tumor states that are observed during the

regeneration of severely injured lung can be identified (Laughney

et al, 2020). These two states include SOX2-derived KRT5+ basal-

like cells, which exhibit increased RAS signaling and mesenchymal

gene enrichment associated with wound response and the other one

corresponds to SOX9-expressing alveolar epithelial progenitors.

(Vaughan et al, 2015; Zuo et al, 2015; Laughney et al, 2020).

Different states of melanoma
Whereas using bulk sequencing, melanoma could be classified as

MITF-high or AXL-high, at the single-cell level every tumor contains

malignant cells corresponding to both states. Melanoma cells with

the AXL program are selected and enriched following treatment with

RAF and MEK inhibitors. CAF abundant tumors are enriched for the

AXL-high signature, suggesting that CAFs promote the AXL-high

tumor state (Tirosh et al, 2016a). Melanomas comprise cycling

Table 1 (continued)

Reference/Year Species Model Tumor type

scRNA-seq analysis on

Tumor
cells

Stromal
cells

Chen et al (2021) Human Primary tumors, one lymph
node metastasis

Prostate carcinoma X X

Young et al (2018) Human Primary tumors Renal cancer X
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states and non-cycling states, the latter showing high expression of

the histone demethylase KDM5B. Within the cycling population, a

high-cycling state with unique high expression of cyclinD3 differs from

the low-cycling state. In cell lines characterized by a low percentage of

AXL+ cells, the treatment with BRAF/MEK inhibitors promotes the

enrichment of AXL+ cells leading to drug tolerance, suggesting that a

rare tumor-resistant state exists before treatment (Tirosh et al, 2016a).

Moreover, gene regulatory network and trajectory inference in

patient-derived cancer cell lines indicate that the increase in AXL

expression occurs during the transition from the melanocytic tumor

state (characterized by the expression of SOX10 and MITF transcrip-

tion factors) to the mesenchymal tumor state (characterized by the

expression of SOX9 and AP-1) via an intermediate state expressing

SOX6 and displaying simultaneous melanocytic (pigmentation) and

mesenchymal-like (increased migration) phenotypes. Consistent with

a role of SOX10 in regulating the melanocytic state, SOX10 knock-

down results in the downregulation of makers of the melanocytic

lineage and the increase in the expression of mesenchymal-like genes

(Wouters et al, 2020). Altogether, these studies in melanoma show

that scRNA-seq analysis allows the identification of dynamically regu-

lated cellular states with different properties.

Insights from mouse models
Tumor mouse models can be helpful in deciphering functional

heterogeneity, allowing longitudinal studies from tumor initiation to

late stages of tumor progression. Single-cell analyses performed

during tumor initiation in a chemically induced mouse model of

esophagus squamous cell carcinoma (SCC) revealed different tumor

states across different stages of tumor development including hyper-

plasia, dysplasia, and carcinoma. This study proposed a model

where, during carcinogenesis, proliferating cells either switch to a

malignant state progressively acquiring gene signatures typical of

EMT, angiogenesis, immunosuppression, and invasiveness, or dif-

ferentiate. The malignant switch is associated with the increase in

transcription factors such as Snai3 and Ets1 and the decrease in

tumor suppressor gene expression (Trp53, Pit1, and Bclaf1) (Yao

et al, 2020). The progression through the malignant phenotype was

accompanied by gradual decrease in Notch1 expression, consistent

with the high proportion of Notch1 mutations in SCCs (Dotto, 2009;

Sanchez-Danes & Blanpain, 2018; Yao et al, 2020).

A study in a mouse model of small cell lung carcinoma (SCLC)—

a neuroendocrine tumor classified into four molecular subtypes

(SCLC-A, SCLC-N, SCLC-P, and SCLC-Y)—provided deeper insights

in the understanding of the mechanisms underpinning cell pheno-

type plasticity. The authors showed that mutated-MYC overexpres-

sion in a pulmonary neuroendocrine cell of origin, in the context of

Trp53 and Rb1 deletion, promotes the SCLC-N and SCLC-Y, but not

SCLC-P, molecular subtypes (Ireland et al, 2020). scRNA-seq and

pseudotime ordering of four tumors developed in this mouse model

showed that MYC drives the evolution of SCLC fate from neuroen-

docrine to non-neuroendocrine states. Mechanistically, MYC

increases NOTCH signaling to destabilize the neuroendocrine iden-

tity during SCLC evolution. Therefore, this work sheds light on the

mechanisms that determine SCLC subtypes, demonstrating that

genetic (MYC mutation), cell of origin (neuroendocrine cell), and

cell plasticity matter in SCLC evolution (Ireland et al, 2020).

In conclusion, mouse models allow to interrogate the tumor

states at different stages of tumor progression. In addition, the

genetic overexpression or downregulation of candidate genes and

transcription factors in vivo allows the identification of precise

molecular mechanisms regulating cell state transitions in the native

tumor environment.

Spatial organization and interactions of tumor
subpopulations

The identities and functions of different tumor states are regulated

by the interactions between TCs and the various components of the

TME, including endothelial cells, the immune system, CAFs, extra-

cellular matrix, and various signaling molecules. Different tumor

states have also been identified in cell cultures where the TME

populations are missing. ScRNA-seq analysis of 198 cancer cell lines

from 22 cancer types uncovered different tumor states that are

found across multiple cancer cell lines, including proliferation,

stress response, interferon response, senescence, and EMT. The

tumor states found in cell lines faithfully recapitulate the transcrip-

tional programs of human primary tumors (Kinker et al, 2020).

Consistent with what is found in vivo (Puram et al, 2017; Aiello

et al, 2018; Pastushenko et al, 2018), cancer cell lines show a

continuum of states during EMT (McFaline-Figueroa et al, 2019).

These data support the notion that soluble signals can be sufficient

to drive tumor heterogeneity in the absence of direct interactions

with the TME. However, this is context dependent as demonstrated

in a study comparing tumor states in primary glioblastomas and

matched in vitro models. The study showed that glioblastoma orga-

noids co-cultured with brain-like cells (generated from the differenti-

ation of human embryonic stem cells) better phenocopy the primary

tumor state composition compared to 2D cultures and glioblastoma

organoids alone. This demonstrates that the presence of an intact

tissue architecture matters in the regulation of tumor states (Pine

et al, 2020). Novel bioinformatic software such as CellPhoneDB

(Efremova et al, 2020) or NicheNet (Browaeys et al, 2020) that use

scRNA-seq data across multiple cell types to predict paracrine

signaling pathways that operate within the tissue allow to predict

the interactions between TCs and the TME subpopulations. ScRNA-

seq-based ligand–receptor predictions revealed that macrophages

are involved in the induction of the mesenchymal-like state in a

glioblastoma mouse model. Multiplexed error-robust fluorescence

in situ hybridization (MERFISH) confirmed the enrichment of

macrophages in proximity of EMT-like cells (Hara et al, 2021). Other

computational approaches enable to associate specific interaction

scores (ligand–receptor) to phenotypes (e.g., tumor growth rate)

(Kumar et al, 2018). Interestingly, besides MERFISH, other tech-

niques that localize hundreds of genes in intact tissues such as

in situ RNA sequencing and sequential fluorescence in situ

hybridization (seqFISH) have been developed (Ke et al, 2013;

Lubeck et al, 2014). They allow to quantify the transcriptome in

tissue sections, integrating phenotypes with spatial information

(Stahl et al, 2016; Eng et al, 2019). Laser-capture microdissection of

human liver tumors, combined with bulk- and scRNA-seq allowed

the localization of different subpopulations in distinct areas, such as

high CAF and T-cell abundance in fibrotic areas and at the tumor

borders, respectively (Massalha et al, 2020). Spatial transcriptomics

and scRNA-seq integration facilitated the identification of specific

cell population enrichment in different areas of pancreatic tumors.
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For example, tissue resident M2 macrophages are abundant in the

ducts, whereas M1 macrophages are more enriched in the stroma

and the cancer regions characterized by an inflammatory environ-

ment. Cancer cells that are in physical proximity with inflammatory

fibroblasts present an increase in a stress-like state (Moncada et al,

2020). Similarly, CSCs in skin SCC are localized in the immediate

vicinity of endothelial cells. VEGF overexpression by CSCs sustains

tumor stemness and symmetric CSC division, leading to CSC expan-

sion by promoting the formation of the vascular niche and directly

regulating tumor stemness in a cellular autonomous manner

through Nrp1 signaling in TCs (Beck et al, 2011). Also, CSCs in

SCCs display an heterogeneous response to TGFb, with non-

responsive TCs fueling tumor growth and responsive TCs acquiring

malignant and invasive features. Responsive TCs proliferate slowly

and promote glutathione metabolism, both mechanisms protecting

cells from cytotoxic drugs such as cisplatin (Oshimori et al, 2015).

Overall, these methods enable to integrate cell phenotypes with

spatial information. In conclusion, bioinformatic and molecular

strategies can predict cell–cell interactions and identify the spatial

distribution of tumor states within their ecosystem. These data can

eventually be used to assess the functional relevance of these

communications and interactions and how they impact TC states.

Tumor states during epithelial-to-mesenchymal transition
at single-cell resolution

EMT is a reversible process whereby cells lose their differentiated

epithelial characteristics such as polarity and adhesion and acquire

mesenchymal features, including motility and invasive properties,

as discussed in detail in the review by Brabletz published in the

same issue (Brabletz et al, 2021). In mouse skin SCCs and

mammary tumors, different EMT tumor states have been identified.

These tumor states comprise epithelial, hybrid (i.e., showing both

epithelial and mesenchymal characteristics), and more mesenchy-

mal tumor states. Interestingly, these tumor states exhibit different

tumor functions. The epithelial state is the most proliferative

suggesting that epithelial cells drive tumor growth, whereas the

mesenchymal cells are more invasive and the intermediate hybrid

EMT cells are the most metastatic. Although all EMT subpopulations

present a certain degree of plasticity upon transplantation, the early

hybrid EMT state is primed toward the epithelial phenotype, while

the most mesenchymal TCs preferentially give rise to late EMT

tumor states. These states are regulated by different combinations of

transcription factors and are located in different cellular niches with

specific compositions of stromal cells (Pastushenko et al, 2018;

Pastushenko & Blanpain, 2019). These different EMT tumor states

were identified in other tumor types and the hybrid TCs are also

associated with increased metastatic potential (Neftel et al, 2019;

Wouters et al, 2020; Simeonov et al, 2021).

Cancer mouse models coupled with fluorescent lineage tracing

allowed the tracking of TCs in the primary tumor, in the blood, and

at the metastatic sites independently of dynamic changes in gene

expression that accompanied EMT. Using a combination of CRE and

DRE lineage tracing in MMTV-PyMT breast cancer model, it has

been shown that N-cadherin lineage tracing marks the vast majority

of metastatic initiating cells, whereas very few metastatic cells were

labelled using vimentin lineage tracing. These data support the

notion that partial, but not full, EMT is required for the initiation of

the metastatic cascade (Li et al, 2020; Vieugue & Blanpain, 2020). In

contrast to mouse models, in human cancers, it is more complicated

to distinguish CAFs from TCs that undergo EMT. Importantly, the

analysis of the transcriptomes of tumor and stromal cells at single-

cell resolution allows the identification of copy number variations

and thus exclusion of non-tumoral cells.

Single-cell transcriptomic analysis of primary and metastatic

head and neck SCCs identified hybrid EMT programs. TCs exhibiting

this partial EMT phenotype are spatially localized at the leading

edge of the tumors (Puram et al, 2017). Hybrid EMT states have also

been identified in human nasopharyngeal carcinomas (Zhao et al,

2020). scRNA-seq of primary human skin SCC showed that cuta-

neous SCCs contain TCs that recapitulate the major cell states of

normal epidermis (basal, cycling, and differentiating) and identified

a tumor-specific subpopulation (Ji et al, 2020). Interestingly, this

tumor-specific cell state expresses EMT markers, such as vimentin,

while maintaining high expression levels of epithelial genes,

suggesting that, similar to the head and neck tumors, human skin

SCC cells undergo partial EMT (Ji et al, 2020). Interestingly, SCC

cells enriched for hybrid EMT signature were located at the leading

edge of the tumor. This tumor-specific EMT state comprise a minor-

ity of cells and most of the leading cells are enriched for basal tumor

genes. Single-cell spatial transcriptomic analysis identified the

ligand–receptor interactions between EMT SCC cells at the leading

edge and the surrounding stroma. EMT SCC cells at the leading-edge

signal to CAF through MMP9-LRP1 and TNC-SDC1 ligand–receptor

interactions. Additionally, this cellular state may modulate the

endothelium through the ligand–receptor pairs PGF-FLT1, PGF-

NRP2, and EFNB1-EPHB4. Conversely, endothelial cells and CAFs

prominently co-express ligands predicted by Niche-Net such as

TFPI, FN1, and THBS1, matching EMT SCC expressing receptors (Ji

et al, 2020).

Combination of single-cell lineage tracing and single-cell tran-

scriptomic analysis in orthotopic transplantation of Kras/p53 mouse

pancreatic adenocarcinoma cells showed that cells occupy a contin-

uum of EMT states during tumor progression (Simeonov et al,

2021). In vivo, non-aggressive clones that constitute the majority of

the total number of clones express epithelial genes, while more

mesenchymal states are restricted to large aggressive clones. Inter-

estingly, PDAC cells cultured in vitro are mostly epithelial. These

data suggest that the epithelial tumor state composes the baseline

state of PDAC cells and that EMT is induced only in vivo. A more

detailed analysis of in vivo single-cell data identified six tumor

states: epithelial state, four hybrid EMT states, and a mesenchymal

state. These states exhibit differential enrichment of epithelial and

EMT markers and transcription factors. EMT master regulators such

as Zeb1, Zeb2, or Snai1 are enriched in early clusters, while ETS-

domain TFs are enriched in intermediate hybrid EMT states. Motifs

bound by members of the Sox and Fox families are enriched in late

hybrid EMT and mesenchymal states. Transitioning from early to

late EMT states is accompanied by a strong shift from oxidative

phosphorylation toward glycolysis (Simeonov et al, 2021). Single-

cell analysis of primary human pancreatic cancer also revealed the

presence of TCs with high EMT signature. Interestingly, primary

tumors were very heterogeneous among different patients, and

while 2 of 10 primary samples present very high percentage of TCs

with high EMT signature (> 70% of TCs), the remaining samples
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present low percentage of TCs with EMT features. All the metastatic

lesions analyzed in this study are fully epithelial (Lin et al, 2020).

scRNA-seq analysis of primary human colorectal cancers revealed

that after exclusion of non-tumoral cells based on the copy number

variation profile, TCs do not show downregulation of CDH1 or

upregulation of known EMT markers and that only CAFs express

EMT genes suggesting that EMT signature derived from bulk RNA-

seq may sometimes come from CAF contamination (Li et al, 2017).

Pseudo-temporal (pseudotime) ordering of single-cell data provides

differentiation trajectories that may recapitulate transitions between

cell states. This type of analysis in skin SCCs that undergo sponta-

neous EMT revealed that EMT occurring during tumor progression is

not a unique continuum, but shows two different divergent trajecto-

ries (Pastushenko et al, 2018). Soft clustering analysis of single-cell

EMT datasets of skin SCC and embryogenesis of intestine, liver, lung,

and skin confirmed the existence of different EMT trajectories in

cancer and during normal tissue development (Sha et al, 2020b). Dif-

ferent trajectories can also be observed upon TGFb-induced EMT in

lung cancer cells and in mesenchymal-to-epithelial transition occur-

ring upon withdrawal of TGFb in vitro (Karacosta et al, 2019).

Although the existence of different trajectories during EMT seems to

be conserved across different cancer types, the functional significance

of these trajectories remains unclear. Further studies are needed to

understand whether different EMT trajectories represent different

EMT states (hybrid versus full EMT), have different metastatic poten-

tial or respond differently to therapy (Fig 2A). In situ identification

and characterization of different trajectories and whether a specific

trajectory is associated with a particular niche remain open questions.

In addition, the cell-autonomous and non-cell-autonomous mecha-

nisms regulating different EMT states and trajectories remain poorly

understood. ScRNA-seq performed on multiple cancer cell lines

revealed EMT-related heterogeneity (McFaline-Figueroa et al, 2019;

Cook & Vanderhyden, 2020; Deshmukh et al, 2021), suggesting that

EMT heterogeneity is regulated, at least in part, by cancer cell-

autonomous mechanisms such as the expression of Itgb3 and Itgav

by TCs that were previously identified in different EMT states (Pas-

tushenko et al, 2018). Single-cell analysis of primary murine and

human tumors also revealed stromal cell heterogeneity (Kanzaki &

Pietras, 2020; Cildir et al, 2021; Yuan et al, 2021). However, whether

stromal cell heterogeneity can modulate EMT states and trajectories,

and which are the precise ligand–receptor interactions or other mech-

anisms controlling this heterogeneity, remains poorly understood.

Recently, bioinformatic analysis of available datasets analyzed the

cell–cell communications and the multilayer gene–gene regulation

networks underlying gene regulatory dynamics along EMT. Analyses

of scRNA-seq datasets of ovarian cancer cell lines exposed to different

EMT-inducing agents at different time points revealed that EMT driven

by TGFb-1 is highly synchronized, while EMT promoted by EGF and

TNF is asynchronous. Ligand–receptor interaction analysis between

ovarian cancer cells with different degrees of EMT revealed that the

large proportion of mesenchymal cells behaved as “receiver” of TGFb
released from the epithelial and hybrid EMT states (Sha et al, 2020a).

The metastatic and the dormant tumor states

During the metastatic cascade, TCs leave the primary tumor, invade

the underlying matrix (invasion), penetrate in the bloodstream

(intravasation), and travel to the target organ where they extrava-

sate and infiltrate the stroma, giving rise to disseminated TCs (colo-

nization) (Pantel & Brakenhoff, 2004; Lambert et al, 2017; Mohme

et al, 2017) (Fig 2B). Depending on intrinsic or extrinsic factors,

disseminated TCs start proliferating giving rise to macrometastasis,

or remain dormant during variable periods of time (Risson et al,

2020). Single-cell profiling can be key to uncover regulators promot-

ing each stage of the metastatic cascade.

Metastases are seeded by rare TCs with unique properties, the

so-called metastasis-initiating cells (MICs). scRNA-seq of TNBC

patient-derived xenografts (PDXs) revealed that primary tumors

contain a rare subpopulation of stem-like cells, enriched in basal-

like gene signature. Similarly, low-burden micrometastasis and

circulating tumor cells (CTCs) are enriched in basal-stem like genes,

suggesting that these stem-like cells may represent the true meta-

static seeder cells (Lawson et al, 2015). Micrometastases express

higher levels of quiescence- and dormancy-associated genes, while

macrometastases show a shift toward a more proliferative signature,

with higher levels of cell-cycle-promoting genes such as MYC and

CDK2, as well as MMP1 and CD24, which have been previously

associated with reactivation after dormancy. Interestingly, treatment

with the CDK inhibitor Dinaciclib decreases the incidence of

macrometastasis in this model (Lawson et al, 2015). scRNA-seq of

human lung adenocarcinoma cells from primary tumors at different

stages and from metastatic lesions identified two transcriptional

tumor states. One trajectory represents normal lung differentiation

including club cell, alveolar type 1, and type 2 cells, and the second

trajectory is only found in tumors and not normal tissue. This

second trajectory signature is associated with late-stage tumors and

higher frequency of lymph node and brain metastasis, suggesting

that it represents the metastatic initiating cells and correlates with

poor survival (Kim et al, 2020). Lineage tracing using CRISPR-Cas9

in a human lung adenocarcinoma cell line transplanted into immun-

odeficient mice demonstrated that primary tumors contain different

cell subpopulations with distinct metastatic potentials. The different

clones are associated with distinct transcriptional signatures and

give rise to metastasis in different organs, suggesting that the organ-

otropism of each clone is pre-existing in the cell line before trans-

plantation (Quinn et al, 2021). Different tumor types give rise to

metastases that preferentially colonize particular tissues. For exam-

ple, prostate cancer preferably metastasizes to the bones (Gao et al,

2019), while the most common site of metastasis of colon cancer is

the liver (Engstrand et al, 2018). Breast cancer can metastasize to

different sites, including bone, liver, lung, and brain. However, the

luminal estrogen receptor (ER)-positive subtype has a higher

propensity to metastasize to the bone (Chen et al, 2017). Interest-

ingly, using a barcode system and single-cell analysis, the bone

microenvironment has been shown to facilitate breast and prostate

cancer cells to further metastasize and establish multiorgan

secondary metastases. This metastasis-promoting effect is driven by

epigenetic reprogramming, enhanced by EZH2 activity, which

confers stem cell-like properties to cancer cells disseminated from

bone lesions (Zhang et al, 2021). The osteogenic niche transiently

reduces ER expression in bone micrometastasis of luminal ER-

positive breast cancer cells through epigenetic reprogramming regu-

lated by EZH2, leading to intra-metastatic heterogeneity and endo-

crine resistance (Bado et al, 2021). Lineage tracing combined with

single-cell transcriptomic analysis of Kras/p53 mouse pancreatic
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adenocarcinoma cells at primary and metastatic sites demonstrated

that, in the primary tumor, more than 50% of cells come from a

minority of clones. At metastatic sites, 80–90% of cells typically

come from a single clone and both mice analyzed have one clearly

dominant clone across all disseminated sites. Interestingly, 51% of

clones fail to metastasize, suggesting that mutations in Kras and p53

alone do not ensure metastatic potential (Simeonov et al, 2021).

Interestingly, metastatic dissemination of TCs peaks on late-hybrid

EMT state and then sharply declines at highly mesenchymal states

(Simeonov et al, 2021).

The detection, isolation, and transcriptome analysis of single

CTCs offer an appealing minimally invasive approach that allows

the characterization of tumor heterogeneity that can help to better

understand the biology of tumor evolution and metastasis. The

CTCs are very rare events as compared to the total number of blood

cells in the circulation. This makes the identification, enumeration,

and isolation of CTCs a very challenging process. The use of anti-

Epcam antibodies to capture CTCs from blood specimens of patients

with epithelial cancers has opened a new field of cancer diagnostics

and the use of an automated CellSearch platform in clinical trials

has demonstrated the prognostic value of Epcam+ CTCs in several

cancer types (Andree et al, 2016). Transplantation of Epcam+ CTCs

isolated from patients with primary luminal breast cancer in mice

gives rise to bone, lung, and liver metastasis, demonstrating that

Epcam+ CTCs contain metastasis-initiating cells. Further analysis

revealed that the metastasis-initiating cells are defined by the co-

expression of Epcam, CD44, CD47, and MET markers. Interestingly,

in a cohort of patients with breast cancer metastasis, the number of

Epcam+CD44+CD47+ MET+ CTCs, but not of bulk Epcam+ CTCs,

correlates with lower overall survival and increased number of

metastatic sites (Baccelli et al, 2013). Besides the use of Epcam as a

marker for detection of CTCs, the expression of Epcam has been

shown to be mechanistically associated with increased cancer cell

adhesion, proliferation, migration, and stemness during cancer

progression (Keller et al, 2019). However, Epcam expression varies

according to the tumor type and its expression is also different in

primary and metastatic tumors (Eslami et al, 2020). CTCs isolated

from patients with breast cancer using a label-free microfluidic flow

device are heterogeneous regarding Epcam expression (Hyun et al,

2016). Similar to primary TCs, CTCs can be plastic and dynamically

change their gene expression pattern. CTCs can undergo EMT and

lose part of the epithelial characteristics, including Epcam expres-

sion. Serial monitoring of CTCs in breast cancer patients revealed

enrichment of mesenchymal phenotype in CTCs, while only few
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Figure 2. Dynamic differentiation trajectories and states during EMT.

(A) Schematic representation of EMT trajectories described in skin squamous cell carcinoma (SCC) undergoing spontaneous EMT. Epithelial cells give rise to two different
EMT trajectories. It is still an open question whether these two EMT trajectories are divergent or whether hybrid EMT trajectory (EMT1) can give rise to late EMT (EMT2).
EMT: epithelial-to-mesenchymal transition. (B) Tumor progression occurs through different tumor transition states. These tumor states are located in different niches,
characterized by increasing number of immune cells and vascular density. Cells in the hybrid EMT state have the highest metastatic capacity. Circulating TCs can
circulate individually or in clusters. CTCs: circulating tumor cells.

ª 2021 The Authors The EMBO Journal e109221 | 2021 9 of 17

Rolando Vegliante et al The EMBO Journal



cells expressing EMT markers are detected in primary tumors. In

addition, mesenchymal CTCs are associated with disease progression.

Interestingly, reversible shifts between epithelial and mesenchymal

phenotype accompany each cycle of response to therapy and disease

progression (Yu et al, 2013). In the mouse model of skin SCC, the

majority of YFP+ CTCs were Epcam- (Pastushenko et al, 2018;

Revenco et al, 2019). In contrast, in the syngeneic mouse model of

breast cancer, epithelial type CTCs (defined by high levels of Epcam,

E-Cadherin, and Grhl2 expression) have the strongest lung metastasis

formation as compared to mesenchymal CTCs (characterized by low

Epcam, E-cadherin expression, and high levels of Vimentin, Slug,

Zeb1, and Zeb2 expression) (Liu et al, 2019).

These apparent contradictory results could be due, at least in

part, to the different isolation methods of CTCs. Detection methods

based on the expression of specific markers do not take into account

the heterogeneity of CTCs and thus exclude CTCs that do not

express or downregulate this specific antigen. In addition, the

expression of an antigen is not always specific of TCs, even circulat-

ing Epcam+ cells, thus the quantification of CTCs based only on

specific markers should be interpreted with caution. To be able to

detect and isolate a pure population of CTCs and to exclude non-

tumoral cell contamination, other methods, such as the detection of

driver mutation or specific copy number variations, should be

implemented. Immunohistochemistry or qPCR allows the detection

of a limited number or markers, thus allowing only a partial view

on their gene expression profile. In these settings, scRNA-seq

provided information on the expression of thousands of genes per

cell in a completely unbiased manner, offering important insights

regarding the cellular heterogeneity, as well as identifying key path-

ways in these cells that can have potential clinical utility (Keller &

Pantel, 2019). In addition, scRNA-seq data can be used to infer copy

number variations to exclude the non-tumoral cells.

Isolation of CTCs from breast cancer patients using Chips coated

with Epcam, Her, and EGFR antibodies, followed by scRNA-seq

revealed that CTCs derived from lobular type cancers are mostly

epithelial, whereas those from triple-negative subtype and Her2+

breast cancer are predominantly mesenchymal (Yu et al, 2013).

Primary tumors are mainly epithelial and only rare cells co-

expressing both epithelial and mesenchymal markers are found. In

addition, reversible shifts between epithelial and mesenchymal

phenotype can be observed following each cycle of response to ther-

apy and disease progression (Yu et al, 2013). scRNA-seq of CTCs

derived from patients with advanced breast cancer using Hydro-seq

platform that utilizes size-based single-cell capture identified hetero-

geneous expression of ER, PR, and HER2 receptors in the detected

CTCs. The analysis of EMT markers in these CTCs identified two

populations, epithelial HER2+ CTCs and mesenchymal HER2- CTCs.

The expression of CSC markers was also heterogeneous, being

ALDH highly expressed in epithelial CTCs and CD44 expressed in

EMT vimentin+ CTCs. Both inter- and intra-patient heterogeneity in

CTCs was observed in this study (Cheng et al, 2019). scRNA-seq of

CTCs cultures derived from patients with melanoma showed that

CTCs upregulate lipogenesis and iron homeostasis pathways that

are associated with resistance to BRAF inhibitors and poor outcome

(Hong et al, 2021). Size-based isolation and scRNA-seq of CTCs in a

pancreatic cancer mouse model identified three different subpopula-

tions of CTCs. The biggest CTC cluster is characterized by expres-

sion of classic epithelial markers such as Krt7, Krt19, or Epcam. The

second cluster is enriched for platelet markers and the third cluster

is characterized by a strong cellular proliferation signature. Interest-

ingly, keratin-expressing classic CTCs exhibit high levels of expres-

sion of ECM gene transcripts, such as SPARC. Indeed, SPARC

knockdown decreases PDAC proliferation in vitro and metastatic

capacity in vivo upon intravenous injection of TCs in mice (Ting

et al, 2014). CTC clusters have been shown to have higher meta-

static capacity as compared to single CTCs (Aceto et al, 2014). Anal-

ysis of CTC clusters and primary tumors in mouse models with

tagged mammary tumors at single-cell resolution demonstrated that

CTC clusters arise from oligoclonal TC groupings and not from

intravascular aggregation events. Interestingly, the CTC clusters

exhibited high expression of plakoglobin and KD of this cell junction

component prevented CTC cluster formation and suppressed lung

metastasis (Aceto et al, 2014). Moreover, association of CTCs clus-

ters with neutrophils promoted metastasis (Szczerba et al, 2019).

scRNA-seq of CTCs derived from patients with breast cancer and

mouse models uncovered that CTCs that are circulating in clusters

and are surrounded by neutrophils exhibit a marked enrichment in

positive regulators of cell cycle and DNA replication programs

compared to CTCs alone. Interestingly, CTCs from CTC-neutrophil

clusters expressed high levels of CSF1, CSF3, TGF-b3, and Il-15, prob-

ably involved in neutrophil stimulation, whereas associated neutro-

phils expressed their receptors. Depletion of neutrophils using anti-

Ly6G antibody prevented the formation of CTC-neutrophil clusters

and metastasis formation (Szczerba et al, 2019). Intra-cardiac injec-

tion of CTCs derived from patients with breast cancer into immunod-

eficient mice gave rise to metastasis in the bones, lungs, and brain

similar to the sites where patients with breast cancer develop metas-

tasis. Interestingly, 2 of 4 CTC-derived cell lines give rise to metasta-

sis in the bones, lung, and ovaries, while the other two give rise to

brain metastasis and low metastasis in other organs, suggesting a

CTC-dependent organotropism. This pattern of metastasis reflects the

evolution of patients from which the CTCs are isolated. RNA- and

ATAC-sequencing and functional experiments identified semaphorin

4D as a regulator of TC transmigration through the blood–brain

barrier and MYC as a regulator of the adaptation of disseminated TC

to the brain microenvironment (Klotz et al, 2020).

Single-cell sequencing of the TCs at the metastatic sites can

provide new insights on the programs required for the extravasation

of TCs and metastatic colonization. For example, lymph node

metastases of lung adenocarcinoma present higher myeloid infiltra-

tion and changes in fibroblasts and endothelial cell composition,

suggesting that changes in the microenvironment are key for meta-

static colonization (Kim et al, 2020). scRNA-seq of TNBC PDXs

reveals high transcriptional heterogeneity in primary tumors and

micrometastatic lesions. However, micrometastases harbor a

distinct transcriptome program that is predictive of poor survival.

Pathway analysis revealed mitochondrial oxidative phosphorylation

as the top pathway upregulated in micrometastases, in contrast to

higher levels of glycolytic enzymes in primary TCs. Importantly,

pharmacological inhibition of oxidative phosphorylation dramati-

cally decreases metastatic seeding in the lungs (Davis et al, 2020).

ScRNA-seq of disseminated TCs and macrometastasis in mouse

model of lung adenocarcinoma metastasis (inoculation of H2087

cells into the arterial circulation of athymic mice) led to the identifi-

cation of specific transcription signatures and states associated with

quiescence or spontaneous macrometastasis outgrowth (Laughney
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et al, 2020). Disseminated TC that do not form macrometastasis

express low levels of Sox2 and Sox9 and a transcriptional signature

of the quiescence state found in the primary tumors. Clusters

derived from spontaneous macrometastasis showed enrichment of

Sox9 and were correlated with regenerative and proliferating stem-

like states found in the primary tumor (Laughney et al, 2020).

Tumor relapse after therapy despite apparent complete response

remains a major clinical problem that is attributed to the reactivation

of dormant TCs that disseminate before primary tumor resection.

How dormancy is established, what are the differences between TCs

that remain dormant and the cells that actively proliferate after colo-

nization of distant organs and which mechanisms ultimately drive

the reactivation of dormant cells and growth of macroscopic metasta-

sis remains poorly understood (Linde et al, 2016). Using label reten-

tion experiments in mouse prostate cancer injected intra-cardiacally,

the labeled dormant and proliferating TCs were isolated from bone

marrow. scRNA-seq revealed that interferon signaling is suppressed

in proliferating TCs from bone marrow metastases as compared to

dormant cells. The authors further demonstrated that administration

of HDAC inhibitors restores the intrinsic interferon signaling and

blocks bone metastatic progression (Owen KL EMBO REP 2020).

Mouse pancreatic TCs labeled with fluorescent protein were ortho-

topically transplanted into the mouse pancreas. Few months after

transplantation, the pancreas and the spleen were removed, which

led to liver and/or peritoneal metastases in 65% of the mice, whereas

35% presented disseminated TCs without macrometastasis detectable

by whole-body MRI. Dormant cells exhibit decreased expression of

genes related to proliferation, upregulation of CDK inhibitors p27 and

p21, and genes involved in immune regulation, metabolism, transport

of lipids, and related to angiogenesis. Importantly, the mouse signa-

ture of dormant cells is enriched in cells expressing pancreatic cancer

marker found in biopsies of normal-appearing liver of patients with

pancreatic cancer (preprint: Dudgeon et al, 2020).

Response to therapy

Despite the progress that has been achieved in cancer therapy,

thanks to the development of targeted therapies (e.g., directed

against oncoproteins such as EGFR, BRAF, and ABL), resistance to

therapy is still a major problem in clinical oncology. Under drug

pressure, selection or acquisition of de novo mutations that provide

TCs with survival/growth advantages has been proposed to be the

main mechanisms underpinning acquired resistance. However, it

has become clear that, along with mutational events, non-genetic

adaptations are contributing to resistance to therapy. Like muta-

tional events, some transcriptional programs, including EMT,

enhanced tyrosine kinase pathways, and reduced immune response,

are associated with resistance to therapy. These programs can pre-

exist in tumors and be selected by the treatment or de novo acquired

(Brady et al, 2017; Kim et al, 2018) (Marine et al, 2020; Shen et al,

2020). Within a drug-exposed tumor, a small fraction of cells, called

minimal residual disease (MRD), can persist and remain undetected

for long time, even years, before giving rise to tumor relapse. MRD

is often composed of drug-tolerant persister (DTP) cells that rewire

epigenetic and transcriptional programs to escape cell death. DTP

cells were first identified in vitro as a small subpopulation of cells

that enter a quiescent state upon drug exposure.

In EGFR-mutated NSCLC cell lines that are sensitive to the EGFR

inhibitor erlotinib, rare TCs survive and enter a reversible IGF-1R-

mediated drug-tolerant state that does not rely on increased drug

efflux. Interestingly, this state is promoted by complex epigenetic

events as suggested by increased histone demethylase KDM5A activity

and sensitivity to the histone deacetylase HDAC inhibition (Sharma

et al, 2010). KDM5A/B are involved in fulvestrant (anti-estrogen ther-

apy) resistance in ER+ breast cancer cells, as CRISPR-Cas9-mediated

knockout of these genes and the use of KDM5 family inhibitors restore

drug sensitivity to endocrine therapy. Moreover, KDM5B elevated

expression correlates with higher transcriptional heterogeneity, likely

contributing to therapy resistance (Hinohara et al, 2018).

Induction of a reversible slow-cycling drug-tolerant state seems

to be a general survival mechanism in response to a wide range of

treatments in different cancers. For example, basal cell carcinomas

(BCC), whose survival relies on aberrant activation of the Hedgehog

pathway, can be treated with HH inhibitors such as vismodegib. It has

been observed in mouse models and patients that, despite clinical

regression of BCC, some persisters survive HH inhibitor by a non-

genetic switch to a quiescent cell state. These cells are the root of

relapse as they resume proliferation after treatment discontinuation.

Moreover, they display activation of the Wnt pathway and the combi-

nation of vismodegib and Wnt inhibitors eradicates DTCs and

prevents tumor relapse (Biehs et al, 2018; Sanchez-Danes et al, 2018).

Recently, it has been demonstrated that persister cells derived

from a variety of cancers challenged with different drugs depend on

glutathione peroxidase 4 (GPX4) to escape lipid peroxides-mediated

ferroptosis, an oxidative stress-mediated type of programmed cell

death. It is noteworthy that GPX4 ablation elicits ferroptosis in vitro

and prevents relapse in mice. Thus, GPX4 dependency observed in

both drug-tolerant and high mesenchymal cell states represents a

promising approach to achieve definitive cure. In prostate cancer, it

has been demonstrated that androgen receptor (AR)-inhibiting ther-

apy results in a drug-tolerant state characterized by an increased

accumulation of phospholipids that underlies enhanced peroxida-

tion and sensitivity to ferroptosis. Current GPX4 inhibitors display

poor pharmacokinetic properties in vivo and more effective mole-

cules are needed (Hangauer et al, 2017; Tousignant et al, 2020).

The advent of single-cell technologies has prompted researchers

to isolate and characterize TCs from residual tissue in both human

biopsies and patient-derived models. In a BRAF-mutant PDX model,

melanoma cells can adopt different strategies to tolerate the cyto-

toxic effects of targeted therapy (BRAF/MEK inhibition) by acquir-

ing new transcriptional identities that lead to the emergence of

differentiated, starvation-like and de-differentiated states. A propor-

tion of de-differentiated cells display neural crest stem cell (NCSC)

traits and are likely to be the TC population that mediate tumor

relapse (Fig 3). Importantly, the different tumor states within the

residual tissue display also spatial heterogeneity which might reflect

the reciprocal interactions between tumor subpopulations and stro-

mal cells. Importantly, the NCSC state is controlled by the retinoid X

receptor- c (RXRG), which is pharmacologically targeted resulting in

delayed tumor relapse (Rambow et al, 2018). Following the NCSC

state depletion, all tumors that relapse acquired resistance-

conferring mutations (Marin-Bejar et al, 2021). Another study in

BRAF-mutated melanoma patient-derived cells treated with a BRAF

inhibitor showed that the acquisition of the resistant state is a multi-

step process. This work demonstrated that rare subpopulations are
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in a transient transcriptionally “primed” state characterized by high

resistance marker expression (e.g., EGFR, NGFR) before drug expo-

sure, and become stably resistant upon treatment through epigenetic

reprogramming. Loss-of-function CRISPR-Cas9 genetic screening

targeting around two-thousand genes led to the identification of

modulators of the primed state. Some of these factors, such as SOX10

and MITF, are well-known inducers of resistance to BRAF inhibitors

in melanoma, while some others are unknown, among which the

H3K79 methyltransferase DOT1L, whose inhibition drives higher

propensity to resistance. Therefore, a slow-cycling population can

even exist within a highly proliferating melanoma and its enrichment

upon exposure to therapy can be at the basis of resistance. These

apparently contrasting observations are most probably the conse-

quence of high intra-tumor and inter-patient heterogeneity (Shaffer

et al, 2017; Torre et al, 2021). Analysis of the MRD following targeted

therapy in NSCLC biopsies revealed the existence of a low proliferat-

ing population presenting alveolar cell traits (Maynard et al, 2020). In

the lungs, both type I and II alveolar cells respond to different types

of stress and injury and participate in tissue repair (Desai et al, 2014).

Thus, MRD TCs hijack alveolar cell repair programs to escape cell

death. This specific state is driven by genes associated with the

WNT/b-catenin signaling including SUSD2 and CAV1.

Isolation and profiling of CTCs provide useful insights in the

understanding of resistance mechanisms in patients undergoing

therapy. Retrospective analyses of CTCs from prostate cancer

patients showed high intra-patient heterogeneity of the AR pathway,

with CTCs harboring one or more AR gene splice variants associated

with resistance to anti-androgen therapies. Moreover, comparison of

CTCs isolated from drug-na€ıve versus treated patients (exhibiting

tumor progression during therapy) identified non-canonical Wnt

signaling as one of the most enriched signatures associated with

resistance onset (Miyamoto et al, 2015). CTCs isolated from ER+/

HER2- breast cancer patients treated with ER antagonist are either

HER2+ or HER2�, suggesting that therapy induces the acquisition of

HER2 expression which is not linked to gene amplifications or muta-

tions. These HER2+ cells are not sensitive to antibody-mediated

HER2 inhibition but show increased proliferation, whereas HER2�

respond to inhibition of NOTCH signaling but do not respond to

chemotherapy, suggesting that the combination of chemotherapy

and NOTCH inhibitors could help to simultaneously target these

two tumor states (Jordan et al, 2016).

Conclusions and perspectives

This review discusses the great power of single cell-based technolo-

gies in providing novel insights into tumor functional heterogeneity.

These studies reveal that tumors are composed of different states

that are likely to accomplish different functions. Tumors invariably

present a proliferative tumor state, which corresponds to the cells

that actively proliferate, and which are probably the cells referred as

CSCs that sustain tumor growth. The differentiated tumor state is

also very frequently identified in the various tumor that have been

profiled, and that resemble normal differentiated cells found in the
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Figure 3. Single-cell approaches enable the identification and targeting of tumor cell states responsible for therapy resistance.
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tissues from where the tumor arises, as tumor differentiation reuses

the physiological programs of tissue differentiation. Invasive tumor

states or EMT-like tumor states are frequently found and likely

correspond to metastasis-initiating cells. Chemotherapy or targeted

therapy is also associated with new tumor states, sometimes pre-

existing or induced by the therapy and that correspond to the persis-

ter states that drive tumor relapse after therapy. Finally, other tumor

states are also identified in a more tumor-specific manner.

While these states strongly suggest their functions, these assump-

tions have rarely been tested experimentally and directly. To get

some clues, new experimental strategies are needed. One needs to

identify new cell surface markers or fluorescent transgenic reporters

to isolate such cells and assess their functions in different biological

assays such as transplantation in vivo, or clonogenic and invasive

assays in vitro. Lineage tracing experiments using an inducible

recombinase coupled with fluorescent or barcoding reporters should

be developed to assess the fate of these tumor states within their

native microenvironment. With these new techniques, it will be

possible to test experimentally the different bioinformatic predic-

tions of the lineage trajectories that these states are giving rise to

during the natural growth of the tumor, the course of the metastatic

process, and following therapy.

Whereas different tools to predict the transcription factors and the

target genes that regulate each tumor state have been developed, more

studies will be needed to test these predictions experimentally. This

can be done by individual gain- and loss-of-function studies using

hypothesis-driven approaches or more unbiased genome-wide loss-of-

function screenings followed by single-cell analysis, allowing to iden-

tify genes that are enriched or depleted in the different tumor states.

Another key unresolved question from these studies is the lineage

plasticity of the different tumor states. Transplantation, lineage trac-

ing, and lineage ablation studies will reveal how stable the states are,

how they transit from one state to the other, what is the role of the

microenvironment in regulating these states or their transition, and

what are the impact of anti-cancer therapy on these states.

There is a need for a much better understanding of how the dif-

ferent populations of stromal cells that compose the TME control

the different tumor states. New computational methods predicting

ligands, receptors, and signaling pathways expressed in the various

tumor states and their neighboring stromal cells will allow to predict

how the different populations of stromal cells may regulate the dif-

ferent tumor states. These predictions will need to be tested experi-

mentally by in situ characterization and by inhibiting or activating

the signaling pathways predicted to regulate the tumor states. Novel

methods of multiplex immunomarking or in situ hybridization,

spatial transcriptomics, or single-cell -omics methods assessing the

proteome and their post-translational modifications will be useful to

visualize the interactions between stromal cells and their associated

tumor states. These experiments will be key to define the specific

niches controlling the different functional states.

Ultimately, these studies should lead to the identification of

tumor state vulnerabilities and pharmacological interventions that

block the essential functions of these various tumor states and

inhibit tumor plasticity.

Single-cell approaches have paved the way to a revolutionary

approach in tumor biology that will be important to improve preci-

sion medicine to tailor treatments to the specific features of each

patient’s tumor.
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