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EMT occurs through distinct inter-
mediate states in vivo.

Distinct EMT transition states can be
identified using cell surface markers
and single-cell RNA-sequencing.

Distinct EMT transition states present
different functions, with the hybrid EMT
state presenting the highest metastatic
potential.

Distinct EMT transition states present
Epithelial–mesenchymal transition (EMT) is a process in which epithelial cells
acquire mesenchymal features. In cancer, EMT is associated with tumor initia-
tion, invasion, metastasis, and resistance to therapy. Recently, it has been
demonstrated that EMT is not a binary process, but occurs through distinct
cellular states. Here, we review the recent studies that demonstrate the exis-
tence of these different EMT states in cancer and the mechanisms regulating
their functions. We discuss the different functional characteristics, such as
proliferation, propagation, plasticity, invasion, and metastasis associated with
the distinct EMT states. We summarize the role of the transcriptional and
epigenetic landscapes, gene regulatory network and their surrounding niche
in controlling the transition through the different EMT states.
different gene expression and chroma-
tin landscape.

Distinct EMT transition states are loca-
lized in different niches that regulate
cell fate transitions.
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EMT Transition States
Epithelial–mesenchymal transition (EMT) is a cellular process in which cells lose their epithelial
characteristics and acquire mesenchymal features. EMT has been associated with various
tumor functions, including tumor initiation, malignant progression, tumor stemness, tumor cell
migration, intravasation to the blood, metastasis, and resistance to therapy [1–3]. EMT has long
been viewed as a binary process with two distinct cell populations, epithelial and mesenchymal
[1,4], and is often defined by the loss of the epithelial marker E-cadherin and the gain of the
expression of the mesenchymal marker vimentin. However, recent studies indicate that EMT
occurs in a gradual manner characterized by several cellular states expressing different levels of
epithelial and mesenchymal markers and exhibiting intermediate morphological, transcrip-
tional, and epigenetic features, between epithelial and mesenchymal cells [5–10]. The inter-
mediate states between epithelial and fully mesenchymal states have been referred to as
partial, incomplete, or hybrid EMT states.

Researchers have investigated the expression of epithelial and mesenchymal markers in various cell
lines, patient derived xenografts [9], and primary cancers. In some breast [6,11,12], pancreatic [12],
renal [13], lung [14], colorectal [12,15], and ovarian [5,16] cancer cell lines, these two markers are
coexpressed in the same cells, suggesting the existence of an EMT hybrid state. In vitro the hybrid
phenotype is associated with increased invasion and migration [5,11,14,17], and increased cell
survival in suspension [5]. Similarly, the coexpression of epithelial and mesenchymal markers has
been documented in human primary cancers, such as breast [18–20], colorectal [21,22], head and
neck [23], lung [24], and pancreatic [25] cancers, as well as in carcinosarcomas including: uterine
[26], renal [27], lung [28], breast [12,29], esophagus [30], and skin [31,32] cancers (Table 1).
Carcinosarcomas are rare tumors that contain epithelial and mesenchymal parts of clonal origin
within thesame tumor and represent the paradigm of spontaneous EMT observed in primary human
cancers from different organs [12,26–34]. Moreover, the coexpression of epithelial and mesenchy-
mal markers evaluated by immunostaining or enrichment of hybrid EMT RNA signature has been
Trends in Cell Biology, Month Year, Vol. xx, No. yy https://doi.org/10.1016/j.tcb.2018.12.001 1
© 2018 Elsevier Ltd. All rights reserved.

mailto:Cedric.Blanpain@ulb.ac.be
https://doi.org/10.1016/j.tcb.2018.12.001


TICB 1477 No. of Pages 15

Table 1. Coexpression of Epithelial and Mesenchymal Markers in Different Cancers and Cancer Cell Linesa

Experimental model Cancer type Markers used Method Refs

Cell line Ovarian carcinoma E-cadherin, N-cadherin, Zeb1 IF [5]

Cell line Breast carcinoma E-cadherin, vimentin IF, FC [6]

Cell line Oral SCC Vimentin, keratin 5, keratin 14 IF, IHC, WB [23]

Cell line Breast carcinoma Vimentin, keratins IF [11]

Cell line Pancreatic cancer E-cadherin, pancytokeratin, Zeb1, vimentin IF [12]

Cell line Clear cell renal carcinoma E-cadherin, Snai1 IF [13]

Cell line Lung adenocarcinoma E-cadherin, vimentin IF [14]

Cell line Colorectal cancer E-cadherin, occludin, Snai1, vimentin WB [15]

Xenograft primary cancer cell lines Ovarian cancer EpCAM, vimentin, CD44 IF, FC [16]

Xenograft primary cancer cell lines Ovarian cancer E-cadherin, Tie2, CD133, CD44 IF, FC [17]

In vivo mouse model Skin SCC
Luminal-like breast cancer
Metaplastic breast cancer

EpCAM, CD106, CD51, CD61 FC [9]

PDX Lung and esophagus carcinomas Pancytokeratin, vimentin IF [9]

Human primary tumors Breast cancer Cytokeratin 8/18, cytokeratin 5/6, vimentin IHC [18]

Human primary tumors Breast cancer Keratin, vimentin IF [19]

Human primary tumors Breast cancer E-cadherin, vimentin IHC [20]

Human primary tumors Prostate cancer E-cadherin, N-cadherin, vimentin, fibronectin IHC, IF [21]

Human primary tumors Lung SCC and ADC E-cadherin, cytokeratin, vimentin IHC [24]

aTable 1 summarizes the epithelial and mesenchymal markers reported to be coexpressed in different cancer cell lines, patient derived xenografts (PDX), and primary
human cancers. Abbreviations: ADC, adenocarcinoma; IF, immunofluorescence; IHC, immunohistochemistry; FC, flow cytometry; WB, Western blot.
associated with poor survival and resistance to therapy in several tumor types [19,23,25,35–37].
Single-cell transcriptomics used to assess tumor heterogeneity in head and neck cancers identified
partial/hybrid EMT programs, defined by incomplete activation of EMT transcription factors (TFs).
Interestingly, cells exhibiting partial EMT were spatially localized at the leading edge of the tumor [38].

In this review article, we describe the increasing evidence demonstrating the existence of different
EMT states and their functional role during tumorigenesis, invasion, and metastasis. We further
discuss the genes associated with each EMT state, their chromatin landscape, their regulatory
network, their spatial location, and the mechanisms regulating their transition and plasticity.

EMT in Mouse Cancer Models
Until recently, most studies on EMT were performed using cancer cell lines in vitro or by
assessing pathological specimens of human cancers, precluding the assessment of the
functional significance and the cellular plasticity of EMT in vivo. Moreover, due to the lack
of expression of epithelial markers in full EMT, it is difficult to determine with high confidence
whether cells expressing only mesenchymal markers correspond to tumor cells or to cancer
associated fibroblasts. For these reasons, researchers have developed genetically engineered
mouse models combining lineage tracing to assess EMT in vivo (Table 2). In Pdx1CRE/
KRasG12D/P53cKO/Rosa-YFP or Pdx1CRE/KRasG12D/Ink4a+/�/Rosa-YFP mice [39],
which results in oncogenic recombination and YFP expression exclusively in embryonic
pancreatic epithelial cells, more than half of the tumors showed EMT features, characterized
2 Trends in Cell Biology, Month Year, Vol. xx, No. yy
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Table 2. EMT in Mouse Cancer Modelsa

Tumor type Mouse models Markers used to define epithelial and mesenchymal states Refs

Pancreatic cancer Pdx1CRE/KRasG12D/P53cKO/Rosa-YFP
Pdx1CRE/KRasG12D/Ink4a+/�/Rosa-YFP

Zeb1, Fsp1, E-cadherin [39,47]

Pancreatic cancer Pdx1-cre;KrasLSL.G12D/+;Tp53LSL.R172H/+;Zeb1fl/fl E-cadherin, vimentin [54]

Pancreatic cancer Pdx1-cre;LSL-KrasG12D;P53R172H/+;Twist1loxP/loxP
Pdx1-cre;LSL-KrasG12D;P53R172H/+;Snai1loxP/loxP

aSMA, Krt8, Krt19 [56]

Prostate cancer Probasin-CRE/Pten cKO/KRasG12D/Vim-GFP EpCAM, pancytokeratin, vimentin [40]

Colorectal cancer VilinCREERT2/p53KO/NICD-IRES-GFP E-cadherin, vimentin [41]

Breast cancer MMTV-PyMT, Rosa26-RFP-GFP/Fsp1-Cre E-cadherin, vimentin, Fsp1 [42,57]

Breast cancer K8-CreERT2/Pik3caH1047R/p53fl/fl/Rosa26-YFP Krt8, Krt14, vimentin, CD106, CD61, CD51 [9,44]

Breast cancer Lgr5-CreERT2/PIK3CAH1047R/Tomato,
K8-CreERT2/PIK3CAH1047R/Tomato

Krt8, Krt14, CD24, Sca-1 [45]

Skin SCC Lgr5CREER/KrasG12D/p53cKO/Rosa-YFP EpCAM, Krt14, vimentin, CD106, CD61, CD51 [9,46]

aTable 2 summarizes the mouse models describing the role of EMT during tumorigenesis in vivo.
by the gain of mesenchymal markers Zeb1 or Fsp1 or the loss of E-cadherin. A smaller
proportion of tumor cells coexpressed epithelial and mesenchymal markers. Interestingly,
EMT was observed at the early stage of tumorigenesis in areas of metaplasia associated with
inflammation, and the presence of circulating pancreatic cells presenting the oncogenic
recombination could be identified before the presence of macro- or micro-metastasis, sup-
porting that EMT and blood dissemination occur early during pancreatic tumorigenesis [39].

Similarly, in a mouse model of prostate cancer using probasin-CRE/Pten cKO/KRasG12D
together with a vimetin-GFP reporter gene, different subpopulations of prostate tumor cells
could be identified: EpCAM+ tumor epithelial cells, hybrid EpCAM+/vimentin-GFP+ TCs, and
EpCAM�/vimentin-GFP+ tumor mesenchymal cells [40]. The hybrid and mesenchymal tumor
cells exhibited increased invasive features, circulating tumor cells (CTCs), and tumor propa-
gating characteristics, suggesting an important role for EMT during the early stages of
metastatic dissemination [40]. VilinCREERT2/p53KO/NICD-IRES-GFP mice, that present
p53 deletion and expression of active Notch1 receptor in the gut epithelium after tamoxifen
administration had an increased rate of malignant progression to colorectal tumors expressing
a moderate to poorly differentiated phenotype, which was associated with metastasis to the
lymph node, liver, and peritoneum [41]. Immunohistological analysis revealed that these
aggressive intestinal carcinomas presented EMT features, including an elongated shape
and expression of mesenchymal markers together with the loss of E-cadherin [41]. Triple
transgenic mouse model MMTV-PyMT, Rosa26-RFP-GFP, and Fsp1-Cre allows to follow the
conversion of RFP-positive breast epithelial tumor cells to GFP-positive tumor mesenchymal
cells [42]. In this model, some tumor cells marked with the mesenchymal Cre presented a
spindle shape, long membrane extensions, and were located close to blood vessels, where
these cells were able to migrate along the vessels much faster than individual EMT cells
surrounded by epithelial tumor cells, suggesting that the microenvironment and the proximity to
blood vessels play an important role in the motility of EMT tumor cells [42,43]. In the mammary
gland, activation of oncogenic Pik3ca mutation and simultaneous deletion of p53cKO in the
luminal lineages lead to metaplastic mammary tumors characterized by EMT [44,45].

K14CREER/KrasG12D/p53cKO/Rosa-YFP, which targets the cells of the interfollicular epider-
mis in the skin, leads to the development of well-differentiated squamous cell carcinoma (SCCs)
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without signs of EMT. In contrast, most of the SCCs that arise from the hair follicle (HF) lineages
using Lgr5CREER/KrasG12D/p53cKO/Rosa-YFP present EMT features. The vast majority of
the tumors consist of carcinosarcoma presenting epithelial and mesenchymal features that are
characterized by a fraction of the tumor cells that lost EpCAM expression. Intravenous injection
of epithelial (EpCAM+) and mesenchymal (EpCAM�) tumor cells demonstrates the higher
capacity of lung colonization of EpCAM� cells as compared to EpCAM+. The molecular profiling
of these tumors and their cells of origin demonstrate that HF lineages are transcriptionally and
epigenetically primed to undergo EMT during tumorigenesis [46].

Altogether, these different mouse models illustrate that EMT is relatively common in poorly
differentiated tumors arising from different tissues.

EMT Transition States In Vivo
In HF derived SCCs presenting features of carcinosarcoma, EpCAM is expressed in a bimodal
pattern in YFP+ tumor cells, suggesting that EMT may occur as a binary switch. However, a
screen of a large panel of cell surface markers performed in these tumors revealed that
EpCAM� mesenchymal tumor cells were heterogeneous and expressed different levels of
the cell surface markers CD106, CD61 and CD51 [9]. Combinatorial multicolor FACS analysis
revealed that EpCAM� mesenchymal tumor cells could be separated into six distinct sub-
populations. Immunostaining of (keratin 14) K14 and vimentin revealed that these different
subpopulations present different degrees of EMT. Interestingly, loss of EpCAM expression
coincided with a gain of vimentin expression in all tumor cells, representing the first molecular
switch to the mesenchymal state. However, some EpCAM� subpopulations continued to
coexpress K14 and vimentin, representing hybrid tumor cells, whereas other populations
completely lost the expression of K14, representing full EMT tumor cells (Figure 1A,B).
Single-cell RNA-sequencing of EpCAM+ and EpCAM� tumor cells further confirmed the
heterogeneity of EMT tumor mesenchymal cells and the existence of hybrid and full EMT
tumor populations (Figure 1C). The existence of this population heterogeneity during EMT,
where cells express different levels of CD106, CD61, and CD51, was also found in MMTV-
PyMT luminal and in metaplastic Pik3ca/p53cKO mammary tumors [9] (Table 3 and Figure 2).

Transcriptional profiling of the different tumor cell populations arising in SCCs presenting EMT
revealed that some markers traditionally used to define epithelial state such as Cdh1 or EPCAM
were lost in the early step of EMT, while others such as Krt14, Krt5, or Krt8 were maintained in
the hybrid states and were completely lost in the late stages of EMT (Figure 3) [9]. Similarly,
mesenchymal markers exhibited different patterns of expression: some known EMT genes and
TFs, such as Cdh2, Vim, Snai1, Twist1/2, and Zeb1/2 were highly upregulated in early hybrid
states and were maintained at the same level in the more mesenchymal populations, while the
expression of Cdh11, Pdgfra, Pdgfrb, Fap, Loxl1, Col24a1, Mmp19, or Prrx1 increased in late
stages of EMT (Figure 3) [9].

Recently an alternative post-transcriptionally regulated program that promotes a hybrid
EMT phenotype in vivo has been described in pancreatic tumors [47]. Transcriptional
profiling of E-cadherin+ and E-cadherin� tumor cells from Pdx1CRE/KRasG12D/
P53cKO/Rosa-YFP mice identified two types of pancreatic tumors. One subgroup of
YFP+/E-cadherin� tumor cells was associated with low levels of epithelial gene expression,
whereas the other subgroup was characterized by stable levels of E-cadherin and expres-
sion of other epithelial genes. These EMT tumor cells exhibited intracellular localization of E-
cadherin, suggesting that a hybrid EMT phenotype can be achieved through the relocal-
ization of epithelial proteins [47].
4 Trends in Cell Biology, Month Year, Vol. xx, No. yy
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Figure 1. Definition of Tumor Transition States Occurring during Epithelial–Mesenchymal Transition (EMT). (A) Immunostaining for keratin 14 (K14) and
vimentin (Vim) showing changes in their expression and in the morphology of skin tumor cells during EMT. Epithelial tumor cells have round shape and remain closely
attached one to another, express K14, and are negative for Vim. Cells in early hybrid EMT state coexpress K14 and Vim, are more elongated, but still cohesive. Cells in
late hybrid EMT coexpress K14 and Vim and are further elongated, acquiring fibroblast-like appearance. Mesenchymal tumor cells lost the expression of K14 while are
uniformly expressing Vim, have fibroblast-like shape, and do not form cell–cell junctions [9]. (B) Expression of cell surface markers EpCAM, CD106/Vcam1, CD51/Itgav,
and CD61/Itgb3. Epithelial tumor cells express EpCAM. Early hybrid EMT state is characterized by loss of EpCAM expression and triple negative (TN or
CD106�CD51�CD61�) or CD106+ phenotypes. Late hybrid EMT state is characterized with expression of CD51 or CD106/51. Mesenchymal tumor cells express
CD51/61 or have triple positive (TP or CD106+CD51+CD61+) phenotype. Green color denotes cells with epithelial phenotype, yellow color denotes cells with early
hybrid EMT phenotype, orange color denotes cells with late hybrid EMT phenotype, and red color denotes cells with full EMT phenotype [9]. (C) Examples of principal
component analysis (PCA) plots of single-cell RNA-sequencing of genes expressed in different stages of EMT. Dots represent single cell, colored scale represents the
normalized expression of each gene [9]. Green circle highlights cells with epithelial phenotype, orange circle highlights cells with hybrid EMT phenotype, and red color
highlights cells with full EMT phenotype.
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Table 3. Characteristics of EMT Transition Statesa

EMT state Epithelial Early hybrid EMT Late hybrid EMT Full EMT

Cell shape
Cell adhesion

Round-shaped, strong
adhesion between cells

Round-shaped,
adhesion decreased

Elongated shape,
adhesion lost

Elongated shape,
adhesion lost

Surface markers EpCAM, Cdh1 TN, CD106 CD51, CD106/51 CD51/61, TP

Markers Krt5, Krt14, Dsg2, Esrp1/2 Krt5, Krt14, Vim, Cdh2 Krt5, Krt14, Vim, Pdgfrb,
Fap, Cdh2

Vim, Aspn, Cdh2, Fap,
Mmp19, Lox

Transcription factors Trp63, Klf4, Ovol1, Grhl1-3, Trp63, Grhl1-3, Zeb1/2,
Twist1/2, Snai1

Zeb1/2, Twist1/2, Snai1 Prrx1, Zeb1/2, Twist1/2, Snai1

aTable 3 summarizes the cell shape, the adhesion, the markers, and the transcription factors specific for each EMT transition state. Abbreviations: TN, triple negative
(CD106�CD51�CD61�); TP, triple positive (CD106+CD51+CD61+).
Stemness and Plasticity of EMT Transition States
Cancer stem cells describe a population of tumor cells with increased tumorigenic potential
that self-renew and differentiate into different types of tumor cells present in primary tumors.
Cellular assays, including tumor transplantation, lineage tracing, and lineage ablation have
been developed to assess tumor stemness [48]. EMT has been associated with tumor
stemness by their increased tumor propagating potential following their transplantation into
immunodeficient mice. Forced expression of TFs that promote EMT such as Twist1 or Snail1
in mammary epithelial cells increase their ability to give rise to secondary tumors upon
transplantation [49,50].

Isolation of different tumor cell populations from primary tumors based on EpCAM or E-
cadherin have shown that EMT tumor cell populations are often associated with increased
tumor propagating potential [39,46]. However, tumor cells with an epithelial phenotype can also
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Figure 2. Epithelial–Mesenchymal Transition (EMT) Transition States Exhibit Different Functional Charac-
teristics. Schematic representing EMT transition states and the transcription factors driving each transition. Thickness of
the arrows represent the plasticity of the different EMT states. Proliferation, invasion, plasticity, stemness, and metastatic
capacity of the different EMT transition states are summarized as follows: (+: low to ++++: very high).
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Figure 3. Gene Regulatory Network Controlling Epithelial–Mesenchymal Transition (EMT) Transition States.
(A) Examples of chromatin profiling using an assay for transposase-accessible chromatin using sequencing (ATAC-seq)
showing changes in chromatin accessibility in the different EMT transition states. Green color denotes chromatin profile
from tumor epithelial cells, yellow color denotes chromatin profile from early hybrid EMT cells, orange color denotes
chromatin profile from late hybrid cells, and red color denotes chromatin profile from fully mesenchymal cells. (B)
Representation of chromatin remodeling and their associated transcription factors (TFs) enriched in ATAC-seq peaks
that differ between EMT transition states [9]. Yellow color highlights the TFs common for all EMT transition states and
orange color highlights TFs specific for each EMT transition state.
have tumor propagating potential, albeit slightly reduced, supporting the notion that tumor cells
can possess cancer stem cell features independently of EMT [46,51–53].

In some models, such as ovarian cancer, a hybrid EMT phenotype is associated with increased
tumor stemness, whereas fully epithelial or fully mesenchymal phenotypes were associated
with loss of stem cell markers and tumorigenicity [17].

In HF derived SCCs, EMT tumor mesenchymal cells presented increased tumor propagating
potential. Whereas EpCAM+ epithelial tumor cells give rise to epithelial cells and mesenchymal
tumor cells upon subcutaneous transplantation, EpCAM� tumor cells only give rise to EpCAM�

mesenchymal tumor cells, indicating that tumor epithelial cells can be more plastic than tumor
mesenchymal cells [46]. In this model, hybrid EMT populations displayed a fivefold increase in
tumor propagation as compared to tumor epithelial cells [9]. However, this enhanced tumor
propagation did not further increase in tumor cells that underwent complete EMT and lost the
expression of epithelial markers [9]. Although all EMT subpopulations presented a certain
degree of plasticity upon subcutaneous transplantation, the early hybrid EMT subpopulation
was relatively primed towards a hybrid EMT phenotype, while the most mesenchymal sub-
population was primed towards a mesenchymal phenotype and did not revert spontaneously
to a more epithelial phenotype. The intermediate EMT subpopulations were the most plastic,
Trends in Cell Biology, Month Year, Vol. xx, No. yy 7
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giving equal rise to the other populations [9]. In pancreatic tumors driven by the same genetic
alterations, KrasG12D/p53cKO, tumor propagation of epithelial and hybrid EMT cancer cells
defined by E-cadherin and vimentin coexpression was increased when compared to mesen-
chymal cells [54].

Altogether these studies reveal that EMT is frequently associated with increased tumor
propagation as compared to epithelial tumor cells, and sometimes hybrid EMT populations
are more clonogenic as compared to late EMT cells. In addition, the different EMT subpopu-
lations, depending on the microenvironment, have the ability to give rise to all the other
populations, although some populations are biased to give rise to particular subpopulations.
These data suggest that EMT occurs in a sequential manner and that the tumor cells progress
from epithelial state to mesenchymal state by passing through different intermediate states.
However, it is also possible that some tumor epithelial cells directly give rise to highly mesen-
chymal states or that tumor mesenchymal cells give rise to tumor epithelial cells without passing
through intermediate states.

EMT Transition States and Metastasis
The role of EMT in metastasis has been recently debated and there are cancers that seem to
metastasize without EMT. EMT was initially shown to promote metastasis by the demonstration
that Twist1 silencing in breast cancer cell lines decreases lung metastasis [55]. In contrast, it
was suggested that EMT was dispensable for metastasis due to the presence of metastasis in a
mouse model of pancreatic tumors in which either Twist1 or Snai1 were deleted [56], or in a
mouse mammary tumor model with overexpression of mir200, a microRNA that targets Zeb1
and Zeb2 and inhibits EMT [57]. However, these studies assumed, without experimental
demonstration, that deletion of Twist1 or Snai1 or overexpression of mir200 is sufficient to
completely inhibit EMT in these mouse models [58,59]. In contrast, deletion of Zeb1 in the same
pancreatic mouse cancer model significantly decreased invasiveness of highly aggressive
tumor cells and strongly inhibited metastasis, suggesting that deletion of Twist1 or Snai1
alone is not sufficient to suppress EMT and that Zeb1 deletion has a much greater impact on the
tumor phenotype and metastasis formation [54].

Overexpression of Prrx1 TF induces EMT in kidney epithelial cells [60] and makes the cells more
invasive in human cancer cell lines. Both kidney epithelial cells and human breast cancer cells
overexpressing Prrx1 fail to give rise to lung metastasis after intravenous injection, while Prrx1
silencing in these cell lines promotes efficient lung colonization, suggesting that suppression of
EMT is important for lung colonization [60]. Continuous overexpression of Prrx1 may lock tumor
cells in a late EMT state and inhibit the capacity of tumor cells to undergo mesenchymal–
epithelial transition (MET), thereby limiting the capacity to give rise to lung colonization and the
growth of metastasis. Consistent with the notion that tumor cells need to undergo MET for
metastatic colonization and growth, metastases in humans often present an epithelial mor-
phology, possibly due to the reacquisition of epithelial features by tumor cells that underwent
partial or complete EMT to leave the primary tumors. Similarly, in probasin-CRE/Pten cKO/
KRasG12D model of prostate cancer, lung proliferating macrometastasis express high levels of
pancytokeratin and low levels of vimentin, while micrometastasis, which remain small, dormant
lesions express high levels of vimentin and low levels of pancytokeratin, further suggesting that
reversion to an epithelial phenotype through MET promotes growth of metastasis [40]. Two
Prrx1 isoforms have been described to have an opposite impact on EMT [61]. While over-
expression of Prrx1a was associated with increased expression of E-cadherin and decreased
invasion, overexpression of Prrx1b decreased E-cadherin expression, increased invasion, and
associated with a poorly differentiated phenotype [61]. Although Prrx1b is associated with
8 Trends in Cell Biology, Month Year, Vol. xx, No. yy
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increased blood dissemination of tumor cells, Prrx1a also promotes metastatic outgrowth after
lung colonization, and knockdown of both Prrx1a and Prrx1b isoforms suppresses blood
dissemination and metastasis in this model [61]. Twist1 overexpression in mouse skin SCC
promotes tumor invasion and intravasation of tumor cells into blood circulation, and these
CTCs display an EMT phenotype. However, downregulation of Twist1 is required for efficient
lung metastasis formation [62]. Altogether, these studies suggest that EMT is important for
initiating the metastatic cascade in some tumors, its downregulation is required for metastatic
outgrowth.

In HF-derived EMT skin SCC, tumor mesenchymal cells are more efficient than tumor epithelial
cells to induce lung metastasis following IV injection [46]. However, hybrid EMT tumor cells
present increased lung metastasis as compared to full EMT populations when injected
intravenously. While EpCAM� EMT cells are not able to revert completely to epithelial phe-
notype following subcutaneous transplantation, both hybrid and full EMT tumor cells can
undergo complete MET when metastasized to the lung [9], further underscoring the importance
of the microenvironment in the regulation of EMT and MET. Interestingly, CTCs detected in the
blood of EMT SCCs were EpCAM� tumor cells enriched in early hybrid EMT states [9],
demonstrating that tumor cells with hybrid EMT phenotype not only exhibit increased lung
colonization ability in vivo, but also intravasate blood circulation more efficiently [9].

Hybrid EMT phenotype has been associated with collective cell migration during development,
wound healing, and cancer, where migrating cells acquire mesenchymal features such as loss
of apical–basal polarity, increasing their motility, while maintaining cell–cell adhesion with
neighboring cells [12,14,47,63–72]. The relocalization of adhesion proteins in pancreatic
tumors undergoing nontranscriptional EMT, could lead to the residual adhesion between
tumor cells, contrasting with the single-cell migration observed during transcriptionally medi-
ated EMT [47]. Clusters of CTCs were shown to arise from oligoclonal tumor cell aggregates
and not from intravascular aggregation of tumor cells [73], and are associated with increased
metastatic capacity and poor patient outcome as compared to single CTC [69,74–84]. CTC
clusters detected in the blood of patients with breast cancer are strongly positive for mesen-
chymal markers and weakly positive for pancytokeratin [85], supporting the role of hybrid EMT
in metastatic dissemination of tumor cells. The mesenchymal features found in CTC clusters
could be mediated by the release of TGF-b by the platelets frequently associated with CTC
clusters [85,86].

Hybrid EMT phenotype has been also detected in CTCs in the blood of human patients with
non-small cell lung cancer [87–89], prostate [90], breast [85,89,91], liver [89], colorectal [89],
gastric [89], and nasopharyngeal [89] cancers. Interestingly, coexpression of epithelial and
mesenchymal markers rather than fully epithelial or mesenchymal phenotype, has been
associated with poor clinical prognosis in these cancers [85,87,89,91–95].

Microenvironment Associated with EMT Transition States
The phenotypic plasticity by which epithelial tumor cells that initially undergo EMT are able to revert
to epithelial phenotype by MET at the distant site has been suggested to be regulated by the
microenvironment [2]. Supporting this hypothesis, the different EMT populations are localized in
distinct tumor regions associated with particular microenvironment in skin SCC and mammary
tumors [9]. The composition of the different stromal components changes as tumor cells progress
towards EMT, with a major increase in immune infiltrate particularly enriched for monocytes and
macrophages, as well as an increase in the density of blood and lymphatic vessels (Figure 4A–D)
[9]. Interestingly, in vivo depletion of macrophages increased the proportion of EpCAM+ epithelial
Trends in Cell Biology, Month Year, Vol. xx, No. yy 9
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Figure 4. Niches Associated with Epithelial–Mesenchymal Transition (EMT) Transition States. (A–D) Sche-
matic representation of the different niches associated with the different EMT transition states. Progression from hybrid
EMT states (B and C) to complete mesenchymal states (D) is associated with progressive increase in the density of
endothelial and lymphatic vessels, as well as macrophages [9].
tumor cells and early hybrid EMT states, and prevented further EMT progression towards fully
mesenchymal state. In addition, when the TC subpopulations with different degree of EMT were
isolated from theirnaturalniche and subcutaneously transplanted into immunodeficient mice, they
lost this spatial organization, and the tumor populations with different degree of EMT were
distributed more randomly [9]. These observations suggest the importance of the microenviron-
ment in controlling EMT progression.

Breast cancer cell lines acquire hybrid EMT phenotype under conditions rich in extracellular
matrix. Tumor cells significantly upregulated the expression of Csf-1 and angiopoietin, and
downregulated the expression of epithelial genes such as Krt18. Targeting Csf1/Csf1r axis
prevented EMT in these settings [96]. In breast tumors, high matrix stiffness correlates with
poor survival. Increasing matrix stiffness promotes nuclear translocation of Twist1, which
promotes tumor invasion and metastasis [97]. High matrix stiffness also promotes nuclear
localization of Yap1 [97], which is increased in SCCs presenting EMT [98], supporting the notion
that Yap1 promotes EMT by the nature of the tumor microenvironment [98,99]. Interestingly,
the mechanisms regulating the nuclear translocation of Twist1 and Yap1 upon increased matrix
stiffness are different. Yap1 localization is responsive to changes in cell shape, that occur upon
changes in matrix stiffness, while Twist1 localization was not affected by changes in actin
cytoskeleton, thus supporting the existence of distinct Twist1 and Yap mechanotransduction
pathways [97].

Gene Regulatory Network of EMT Transition States
The different EMT transitional states are associated with changes in the chromatin and
transcriptional landscape of the cells that are mediated by gene regulatory networks (GRNs)
that control the gene expression program specific of each state. Recent progresses have been
made to define the enhancer logic and GRN that control the different EMT states.

Chromatin profiling using assay for transposase-accessible chromatin using sequencing (ATAC-
seq) in HF derived SCCs combined with transcriptional profiling allows to define the chromatin
10 Trends in Cell Biology, Month Year, Vol. xx, No. yy
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remodeling associated with EMT and infers the GRN that regulates the different EMT transition
states. Interestingly, tumor specific active enhancers of epithelial and mesenchymal tumor cells
are both enriched for AP1, Ets, Nfi, Tead, Runx, and Nfkb TF binding sites, suggesting that the
same core of TFs is required to induce chromatin remodeling in the different EMT transition states
[9,46] and consistent with the major defect of skin tumor development following the deletion of
these TFs in skin SCCs [98,100–105]. In addition to these core TFs, different transition states were
associated with specific epithelial and mesenchymal specific TFs. Zeb1, Trp63, Twist 1/2, and
Lhx2 were predicted to be involved in promoting the early hybrid EMT states, whereas Smad2 was
enriched in the latter stages of EMT. Supporting this notion, sustained expression of DNp63 or
blocking Tgf-b/Smad2 pathway decrease the transition from EpCAM+ to EpCAM� and increase
the proportion of early hybrid state at the expense of full EMT [9]. Likewise, DNp63 promotes a
hybrid EMT state in basal like breast cancer through simultaneous increases in Slug and Axl
expression,whichactivate theEMT programand miR-205, whichsilenceZeb1/2and prevents the
loss of epithelial features [67,106].

Despite the important advances in our understanding of the mechanisms by which different TFs
can induce EMT or MET, the specific regulatory elements that can stabilize the hybrid EMT
phenotype in cancer cells, or to promote the transition from the hybrid state to complete EMT,
or to induce MET remains poorly understood. In ovarian carcinoma cell line with hybrid EMT
phenotype Src kinase inhibitor induced restoration of E-cadherin, that is associated with a
decrease in Snai1 and Snai2 levels, while Zeb1, Zeb2, and Twist1 levels remained stable,
suggesting that Src kinases can be involved in stabilization of hybrid EMT phenotype [5].
Willms’ tumor TFs (WT1) exert dual function by transcriptionally activating Snai1 expression
and, at the same time, preventing repression of E-cadherin by Snai1, thus contributing to the
maintenance of a hybrid EMT state in renal cancer [13].

During mammary gland development, cells of the terminal end buds were stabilized in a hybrid
EMT state through the coexpression of Zeb1 and Ovol2 TFs [107,108]. Mathematical modeling
has been used to predict the GRNs that promote the epithelial, mesenchymal, and hybrid
states. These models usually predict that epithelial and mesenchymal TFs and microRNAs
repress the expression of each other, forming a mutually inhibitory loop, for example, miR34/
snai1 or miR200/Zeb loops have been proposed. Such a mutually inhibitory loop leads to
bistable switches, which promotes two distinct fates. However, when mutual repression is not
strong enough, or when one TF strongly promotes its own expression, an intermediate state
can be induced, leading to the formation of a third fate. Epithelial TFs, such as Ovol2 or Grhl2,
by acting as a molecular brake on EMT were predicted to promote a hybrid EMT state with high
tumor initiating potential [8,109,110]. Higher levels of Grhl2 and Ovol2 were predictive of poor
patient outcome [8].

Similarly, using a computational approach, Nfatc1 and Sp1 were proposed to act as master
regulators controlling EMT, and when acting together, to promote a hybrid EMT phenotype.
This bioinformatic prediction was validated in nontransformed mammary gland cells and
colorectal cancer cells, where upon simultaneous Nfatc1 and Sp1 expression, almost half
of the cells acquired hybrid EMT phenotype [111]. Nfatc1 promotes EMT and migration in
breast and lung cancers [106,107], and is predicted to regulate the chromatin landscape and
GRN of EMT transitional states in skin cancers [9,46].

Recently, using a mathematical modeling approach, NRF2 was proposed to stabilize the hybrid
EMT state and prevent progression towards a complete EMT [112]. Similarly, Numb was
predicted to prevent a complete EMT by stabilizing hybrid EMT through Notch signaling.
Trends in Cell Biology, Month Year, Vol. xx, No. yy 11
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Outstanding Questions
Which is the first molecular event that
triggers EMT?

Which are the temporal and spatial
sequences of molecular events that
regulate the different EMT transition
states?

Which factors inhibit late EMT transi-
tion states in most human cancers?

Does EMT occur through the activa-
tion of common pathways across dif-
ferent tumor types, or does EMT
exhibit tissue-specific features?

Which are the molecular players that
control each EMT transition state and
how these different cellular states can
be stabilized?

Does stabilization of specific EMT tran-
sition states promote cancer progres-
sion and metastasis?

Is partial EMT required for metastasis?

What is the role of MET for metastasis
growth?

What extrinsic factors in the metastasis
microenvironment promote MET?

Are particular EMT transition states
associated with resistance to therapy?

What are the mechanisms by which
EMT promote resistance to therapy?

Can specific genetic events, such as
somatic mutations or epigenetic mod-
ifications contribute to maintaining a
specific EMT phenotype?

Which are the precise mechanisms by
Numb-KD in lung adenocarcinoma cell line with stable hybrid EMT phenotype promoted
progression to full EMT [63]. Using a similar mathematical modeling approach, Notch-Jagged
signaling has also been predicted to stabilize hybrid EMT phenotype [113,114].

These studies suggest that computational approaches can be very useful in modeling EMT and
identifying new factors or combinations of regulatory elements that control the different EMT
transition states. However, careful experimental approaches are needed to validate these
predictions. It is also important to keep in mind that EMT is not always transcriptionally
regulated, as recently illustrated by the post-transcriptional promotion of hybrid EMT pheno-
type by Ras [115], and the post-translational regulation of EMT in pancreatic tumors [47].

Concluding Remarks
The studies summarized in this review demonstrate that EMT is not a binary process, and
different tumor cell populations presenting different degrees of EMT can be found in different
cancers. These different populations present different functional properties and the hybrid EMT
state is associated with increased metastatic potential.

Despite the progresses in the identification of the different EMT states and understanding the
mechanisms regulating cell fate transition in tumors, there are still many questions unanswered
(see Outstanding Questions). What is the sequence of events that drive carcinoma cell
progression through the different EMT states? Which are the molecular players that control
each transition and how these different cellular states can be stabilized? Does stabilization of
specific EMT phenotype or switching between epithelial and mesenchymal states promote
cancer progression and metastasis? Can specific genetic events like somatic mutations or
epigenetic modifications contribute to maintain a specific EMT phenotype? Which are the
precise mechanisms by which microenvironment influence cell fate decision during EMT? Do
the different EMT subpopulations present different responses to chemotherapy, radiotherapy,
or immunotherapy? If so, by which molecular mechanisms?

The combination of computational approaches and novel technologies such as single-cell
sequencing, chromatin profiling, or in vivo intravital microscopy, should help to better under-
stand the dynamics and the molecular mechanisms controlling EMT related cancer
heterogeneity.

Finally, the basic understanding of the mechanisms controlling EMT should be used to develop
new therapeutic strategies to prevent tumor progression, metastasis, and resistance to therapy
in human cancers.
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