Eomesodermin induces Mesp1 expression and cardiac differentiation from embryonic stem cells in the absence of Activin

Jelle van den Ameele1,2*, Luca Tiberi1*, Antoine Bondue1,3*, Catherine Paulissen1, Adèle Herpoel1, Michelina Iacovino4, Michael Kyba4, Cédric Blanpain1,5* & Pierre Vanderhaeghen1,5**

1IRIBHM (Institute for Interdisciplinary Research), Université Libre de Bruxelles, Brussels, Belgium, 2Department of Neurology, Ghent University Hospital, Ghent, Belgium, 3Department of Cardiology, Erasme Hospital, Brussels, Belgium, 4University of Texas Southwestern Medical Center, Dallas, Texas, USA, and 5WELBIO, IRIBHM, Université Libre de Bruxelles, Brussels, Belgium

The transcription factor Eomesodermin (Eomes) is involved in early embryonic patterning, but the range of cell fates that it controls as well as its mechanisms of action remain unclear. Here we show that transient expression of Eomes promotes cardiovascular fate during embryonic stem cell differentiation. Eomes also rapidly induces the expression of Mesp1, a key regulator of cardiovascular differentiation, and directly binds to regulatory sequences of Mesp1. Eomes effects are strikingly modulated by Activin signalling: high levels of Activin inhibit the promotion of cardiac mesoderm by Eomes, while they enhance Eomes-dependent endodermal specification. These results place Eomes upstream of the Mesp1-dependent programme of cardiogenesis, and at the intersection of mesodermal and endodermal specification, depending on the levels of Activin/Nodal signalling.

Keywords: Eomesodermin; Mesp1; Nodal/Activin; cardiac fate; embryonic stem cell

INTRODUCTION

During early stages of embryonic development, the three germ layers (endoderm, mesoderm and ectoderm) are specified in a process called gastrulation. Gastrulation begins with the formation of the primitive streak (PS), in which epiblast cells ingress to form the endoderm and the mesoderm. Interplay between extrinsic and intrinsic cues regulates the different cell fates and patterning of the early embryo [1,2]. A better understanding of these early events is critical for improving the differentiation of pluripotent stem cells into clinically relevant cell types [3].

Among the known extrinsic cues, Nodal/Activin signalling has a crucial role in regulating mesoderm and endoderm specification [4]. Nodal is expressed in epiblast cells and acts to promote posterior genes such as Wnt3 and Eomesodermin (Eomes), which are required for mesoderm formation [5]. In the absence of Nodal, no PS is formed, which results in ectopic neural differentiation [6]. During embryonic development and embryonic stem cell (ESC) differentiation, PS derivatives that give rise to definitive endoderm (DE) require a higher intensity of Nodal/Activin signals than posterior derivatives, which will differentiate into mesoderm [7–17].

The T-box transcription factors Brachyury and Eomes are among the well-known intrinsic cues that are critical in patterning the PS [18]. Eomes was initially identified in Xenopus to initiate mesoderm differentiation [19,20], but subsequent studies in mouse [21,22] and zebrafish [23] implied that Eomes was necessary for DE rather than mesoderm specification. This was further substantiated by a recent study, in which overexpression of Eomes in differentiating ESC promoted endodermal fate [7].

Here we investigated the role of Eomes in early cell fate decisions during mouse ESC differentiation, and found that in the absence of extrinsic signals, Eomes promoted the formation of cardiac mesoderm by stimulating the expression of Mesp1, a transcription factor known to have a key role in the specification of cardiovascular mesoderm [24–28]. High levels of Activin decreased the ability of Eomes to stimulate Mesp1 expression, and instead led to the induction of endodermal fate. These data illustrate how a single intrinsic cue can induce distinct fates depending on the levels of an extrinsic signal.

RESULTS AND DISCUSSION

Eomes promotes cardiogenesis in ESC

To explore the impact of Eomes on early ESC differentiation with minimal extrinsic influence, we took advantage of a system
developed recently, where ESCs are cultured as a monolayer in a chemically defined default medium (DDM) devoid of any added exogenous morphogen, except insulin [29–32]. In these conditions, most of the cells differentiated spontaneously into a neural fate [29–32]. To study the role of Eomes, we generated a recombinant ESC line, in which the expression of a Myc-tagged version of mouse Eomes can be induced on doxycyclin (Dox) addition [33,34] (Fig 1A and supplementary Fig S1 online).

In the absence of Dox administration, most cells generated after 10 days corresponded to neural cells and very few cells showed expression of mesodermal or endodermal markers (Fig 1, supplementary Fig S2 online), as previously reported [30]. Transient induction of Eomes by administration of Dox at day 2 of ESC differentiation promoted a completely distinct differentiation outcome, as suggested by the appearance of beating areas (data not shown). Immunofluorescence, quantitative reverse transcription PCR (qRT–PCR) and FACS analyses performed 8 days after Eomes induction revealed a strong induction of the cardiac-specific isoform of TroponinI (cTnT) and a converse reduction of β-tubulin III, Sox1- and Pax6-expressing neural cells (Fig 1, supplementary Figs S2A,C,D and S4A online). cTnT staining revealed a striated pattern characteristic of cardiomyocyte myofibrils (Fig 1P). Eomes overexpression also promoted the appearance of endothelial cells (expressing VE-cadherin and CD31; Fig 1D,E,J) and smooth muscle cells (expressing smooth muscle actin; Fig 1F,G,K and supplementary Fig S2B online). Altogether, the three types of cells derived from multipotent cardiovascular progenitors (MCPs) [27,35–37] were massively increased following Eomes expression in DDM, although we cannot rule out that some endothelial and smooth muscle cells could also derive from other progenitors (such as the hemangioblasts [38] that could also be induced following Eomes expression). We and others have recently demonstrated that a combination of monoclonal antibodies (Flk1/Pdgfrα) can be used to isolate the earliest Mesp1 expressing MCPs arising during ESC differentiation [16,27]. FACS analysis of ESC 48h after Eomes overexpression in DDM revealed a significant enrichment for Flk1/Pdgfrα-positive MCPs in Eomes overexpressing cells (Fig 1O, supplementary Fig S2E online), consistent with the increase of Mesp1 expressing MCPs by Eomes in these conditions. Interestingly, the number of Sox17-expressing endodermal cells at day 10 remained low despite high levels of Eomes expression (Fig 1F,G,L). Overall, these data indicate that Eomes induction leads to robust promotion of cardiovascular fate from ESC in the absence of added morphogens, while neural fate is strongly inhibited, and endodermal fate seems essentially unchanged.

Eomes’ effects are modulated by Activin signalling

Promotion of mesodermal fates, and absence of induction of DE fates following Eomes gain of function during ESC differentiation were surprising, given the well-known effect of Eomes in promoting DE specification during embryonic development [22] and ESC differentiation [7,39]. As those results were obtained in the presence of serum and/or various extrinsic cues such as Activin/Nodal, we next examined the effect of Eomes in our reductionist system, but in the presence of either serum or with increasing levels of Activin. Most strikingly, the presence of serum or Activin inhibited the promoting effect of Eomes on cardiomyocyte differentiation, in a dose-dependent manner. This was reflected by a sharp decrease of cTnT and CD31-positive cells as quantified by FACS (Fig 2A,B, supplementary Fig S4B online), immunofluorescence (Fig 2C, supplementary Fig S2A online) and qRT–PCR (Fig 2D), as well as by the disappearance of beating zones in differentiated ESC (data not shown). Conversely, endodermal markers Sox17 and α-fetoprotein were induced by Eomes mostly in the presence of high doses of Activin (Fig 2D).

To dissect the molecular mechanism underlying the induction of cardiac mesoderm by Eomes in the absence or low dose of Activin, we next analysed the expression of Mesp1, a transcription factor known to induce cardiac mesoderm specification during ESC differentiation [24–28]. We found that in DDM and in the absence of Activin, Eomes gain of function during ESC differentiation resulted in a strong and rapid induction of Mesp1 expression, which was significantly reduced as the concentration of Activin in the culture medium was progressively increased (Fig 3A,A′). Conversely, qRT–PCR and immunofluorescence at day 3, 24 h following Dox addition, revealed that endodermal fate markers Gsc and Sox17 were induced following Eomes expression in the presence of high levels of Activin (Fig 3B–E), in accordance with previous reports [7,39]. Consistent with the increase of endodermal differentiation, we found that Eomes in the presence of high levels of Activin promotes the appearance of cells coexpressing Cxcr4 and Epcam (Fig 3F, supplementary Fig S2F online), two markers associated with endodermal fate [15,40].

These results indicate that Eomes can induce either endodermal or cardiac mesodermal fate during ESC differentiation, depending on the levels of Activin/Nodal signalling. This is reminiscent of the in vivo situation, where a gradient of Nodal signalling across the PS is proposed to pattern differentially the germ layers towards an endodermal or mesodermal fate [11–13].

Eomes binds directly to the Mesp1-promoter

As Mesp1 is already expressed 24 h after overexpression of Eomes, we reasoned that Eomes might directly control the transcription of Mesp1. To address this possibility we analysed the genomic region flanking the Mesp1 locus and found two conserved T-box core motifs [41,42] (T1 and T3, Fig 4A), and a third one (T2) which is not conserved across mammalian species. T3 is located in a highly conserved enhancer region, previously shown to drive Mesp1 expression in the early mesoderm [42,43]. We performed chromatin immunoprecipitation (ChIP) using an anti-Eomes antibody or control immunoglobulin-G coupled to qPCR. Amplification of the promoter regions containing T1 and T3 was strongly enriched following ChIP with the anti-Eomes antibody following Eomes overexpression, as compared with ChIP in the absence of Eomes overexpression or using control immunoglobulin-G. The T2 region and a negative-control region containing no T-box-binding site (–) showed no enrichment (Fig 4B,C, and data not shown). As a positive control for these ChIP experiments, we tested a recently described Eomes-binding site within the Mixl1 promoter [7], and found similar enrichment for this genomic region (Mixl1(T1); supplementary Fig S3A,B online). To test for the in vivo relevance of these findings, we performed ChIP experiments on E7 mouse embryos, and found significant enrichments for the identified regulatory elements in the Mesp1 locus, as well as on the Mixl1 locus (Fig 4C and supplementary Fig S3C online). Consistent with our observations, a recent study identified the same Eomes-binding sites (T1 and T3) in the Mesp1 promoter during the differentiation of P19 cells, an embryonic carcinoma cell line [44].
Given the striking modulatory effects of Activin on Eomes-dependent induction of Mesp1, we next compared the binding of Eomes to the Mesp1 promoter in the presence of Activin (Fig 4B). This revealed a strong decrease in the binding of Eomes to the Mesp1 promoter, suggesting that during endoderm differentiation, Activin may act in part by regulating the recruitment of Eomes to the Mesp1 promoter. Indeed, mice lacking two negative regulators of the transforming growth factor-β pathway (Tgf1 and Tgif2), which present enhanced Nodal signalling, do not express Mesp1 in vivo [45]. Decreasing Nodal signalling in this context rescues Mesp1 expression and gastrulation, suggesting that Nodal signalling restricts Mesp1 expression in vivo as well [45]. Moreover, it has been shown previously that Mesp1 not only induces key cardiovascular transcription factors, but also represses endodermal transcription factors such as Sox17 or Foxa2, further ensuring the specificity in the promotion of cardiovascular cell lineages induced by Mesp1 [25].
Despite direct binding of Eomes to the Mesp1 promoter and the strong and rapid induction of Mesp1 following Eomes overexpression, transactivation assays using different fragments of the Mesp1 promoter [27,43] cloned into a luciferase-reporter vector did not result in a significant increase of luciferase activity following Eomes overexpression, inappropriate cellular context for proper transactivation, the absence of a particular cofactor that would be required with a precise stoichiometry for Eomes to work properly on the Mesp1 promoter, or the need for more epigenetic factors that would not function properly in transient transfection assays. To test further and more directly the functional link between Eomes and Mesp1, we then used sequentially to promote Mesp1 expression in different mesoderm. Interestingly, the same enhancer region and Tbx-binding site between Mesp1/Mesp2 double-knockout mice and Eomes knockout mice that fail to undergo epithelial to mesenchymal transition and to form cardiac mesoderm [21,22,46,47]. Our findings are also fully consistent with a recent report, in which Eomes was demonstrated to be required for cardiac lineage specification [27,43] cloned into a luciferase-reporter vector did not result in a significant increase of luciferase activity following Eomes overexpression, inappropriate cellular context for proper transactivation, the absence of a particular cofactor that would be required with a precise stoichiometry for Eomes to work properly on the Mesp1 promoter, or the need for more epigenetic factors that would not function properly in transient transfection assays. To test further and more directly the functional link between Eomes and Mesp1, we then examined the effect of Eomes on cardiac induction in the presence of a Mesp1–Engrailed fusion protein, previously known to inhibit endogenous Mesp1 functions [27]. Concomitant expression of Eomes and Mesp1–Engrailed fusion protein (supplementary Fig S1B,C online) blocked the ability of Eomes to promote cardiac fate in these conditions, as assessed by cTnT expression (Fig 4D,E, supplementary Fig S4C online). Mesp1 thus acts genetically downstream of Eomes, possibly as a direct target gene. This could explain the similar phenotype between Mesp1/Mesp2 double-knockout mice and Eomes knockout mice that fail to undergo epithelial to mesenchymal transition and to form cardiac mesoderm [21,22,46,47]. Our findings are also fully consistent with a recent report, in which Eomes was demonstrated to be required for cardiac lineage specification in vivo and in vitro, and was suggested to act directly upstream of Mesp1 [44]. It was also recently shown that Brachyury, another Tbx transcription factor, directly binds to the T2 regulatory sequence of Mesp1 and promotes its expression [48], suggesting that several T-Box genes might cooperate to induce Mesp1 expression in the cardiac mesoderm. Interestingly, the same enhancer region and Tbx-binding site (T3) are also required to promote Mesp1 expression in the presomitic mesoderm, suggesting that the same Tbx-binding site is used sequentially to promote Mesp1 expression in different mesodermal cell populations [42]. Moreover, in Ciona intestinalis, the orthologue of Tbx6 acts upstream of Mesp and directly controls its expression allowing cardiac mesoderm specification [49], suggesting

Fig 2 | High concentrations of Activin prevent Eomes-dodermin (Eomes)-stimulated cells from differentiating into cardiovascular mesoderm. Embryonic stem cells (ESCs) were cultured in defined default medium (DDM) for 10 days, with or without doxycyclin (Dox) at days 2–3 and increasing concentrations of Activin (0, 1, 10 and 100 ng/ml) from day 0 to day 4, or 2% serum from day 0 to day 10. (A,B) The percentage of cells positive for cardiac-specific isoform of Troponin T (cTnT; A) or CD31 (B) was determined by FACS. Data are presented as mean percentage of positive cells ± s.e.m. There is a statistically significant interaction between effects of Activin and Eomes induction on the percentage of cTnT and CD31-expressing cells; P = 0.013 and 0.002, respectively. (C) Immunostaining for cTnT and β-tubulin III at day 10 with or without Activin (100 ng/ml) and/or Dox. Scale bar, 100 μm. (D) Quantitative reverse transcription–PCR analysis for Tnnt2, CD31, Sox17 and Afp at day 10 with or without Dox and with increasing concentrations of Activin (0, 10 and 100 ng/ml). Data are presented as mean expression normalized to TBP ± s.e.m.
that a Tbx–Mesp transcriptional circuit has been conserved throughout evolution to promote cardiac progenitor specification.

Altogether, our results indicate a model whereby Eomes acts at least in part through Mesp1 to promote MCP specification and cardiovascular differentiation, although it remains to be determined whether this interaction is mostly direct or also indirect, and which other Eomes target genes may be involved in this process. They also show that these effects are strongly influenced by Activin signalling, pointing to a mechanism by which a single intrinsic cue induces different cell fates depending on the levels of an extrinsic signal.

METHODS
P19 and ESC culture. ICE (A2lox.Cre) mouse ESCs [33] were routinely propagated as described [50]. For differentiation, ESCs were plated at low density (20 x 10^3/ml) on gelatin-coated coverslips. After 1 day, medium was switched to DDM [50] and changed every 2 days. When specified, Activin A (R&D) was added from day 0 to 4 at 1, 10 or 100 ng/ml, 1 μg/ml doxycyclin (Sigma) was added from days 2–4 and 2% fetal bovine serum was added to DDM from day 0 to day 10.

P19 cells were routinely cultured as monolayer in DMEM supplemented with 10% fetal bovine serum, 1% l-glutamin and 1% penicillin/streptomycin.

Generation of tetracycline-inducible ESC lines. To generate the tetracycline-inducible Myc–Eomes ESC line, the N-terminal Myc-tagged murine Eomes open reading frame was amplified by PCR, sequence verified and cloned into the p2Lox backbone [33]. To generate a cell line allowing inducible and combined expression of Myc–Eomes and Flag–Mesp1–Engrailed [27], we introduced both constructs downstream of two separate Tet-O in tandem in the p2Lox backbone [27]. After electroporation into A2Lox.Cre cells and cassette exchange recombination [33], neomycin-resistant clones were screened for their expression of Myc–Eomes or Flag–Mesp1–Engrailed by immunofluorescence (supplementary Fig S1 online) and qRT–PCR (data not shown) 24 h after induction. Results obtained with the Myc–Eomes ESC line were confirmed in three independent clones.

Mesp1-promoter plasmids and transactivation assay. Fragments of the Mesp1 promoter containing one or both T-box sequences T1 and T3 were cloned into a pGL3 basic, a pGL3 enhancer or a pGL3.23 vector backbone (Scheme of cloning depicted in Supplementary Fig S3D online) starting from the pMesp1 plasmid [27] containing a 5.6-kb fragment upstream of the Mesp1 translation site [43]. For transfection, P19 cells were seeded at 25 x 10^3 cells/24-well and 24 h later transfected using Lipofecta-

©2012 EUROPEAN MOLECULAR BIOLOGY ORGANIZATION
All qRT–PCR were performed in duplicate using the Power SybrGreen mix (Applied Biosystems) and a 7500 Real-Time PCR System (Applied Biosystems). Results were normalized to the housekeeping gene TBP; primers used are summarized in supplementary Table S1 online.

Chromatin immunoprecipitation and ChIP–qPCR. ChIP was performed as described previously [52] on ESC after 10 days of differentiation or on dissected E7–7.5 embryos using either the rabbit anti-Eomes antibody (ab2345; Abcam) or the rabbit anti-haemagglutinin isotype antibody (sc-805; Santa Cruz) as control. Primers for qPCR analysis are listed in supplementary Table S1 online. For each primer set, qPCR was performed in duplicate. Results were analysed using the 2−ΔΔCt method, comparing anti-Eomes to anti-haemagglutinin and to the input. Data are presented as percentage of the input. In vitro data are presented as mean ± s.e.m. (B). (D,E) FACS quantification of the percentage of cTnT expression (D) and immunostaining for cTnT (E) at day 10 following induction at days 2–3 of either MycEomes alone or MycEomes combined with Flag–Mesp1–Engrailed in defined default medium without Activin. Scale bar, 100 μm.

Immunofluorescence staining and FACS analysis. Immunofluorescence was performed as previously described [30]. For cytospin analysis, cells were dissociated by trypsinization, cytopspun on Superfrost Plus glass slides and fixed for 5 min in 2% paraformaldehyde. Primary antibodies used were the following: Mouse anti-cardiac isoform of Troponin T Ab1 (1/100; NeoMarkers), Rabbit anti-β-tubulin III (1/2,000; Covance), Goat anti-Sox17 (1/1,000; R&D), Mouse anti-c-Myc (1/1,000; Roche), Mouse anti-Smooth muscle actin (1/200; Sigma), Rabbit anti-Pax6 (1/1,000; Covance), Rat anti-CD144 (VE-cadherin; 1/100; BD Biosciences) and Mouse anti-Flag (M2; 1/500; Sigma).

For flow cytometry, stainings against cTnT (Ab1–NeoMarkers), Flk1 (Vegfr2; Avast12a1; ebioscience), Pdgfrα (APAS; ebioscience), Cxcr4 (2B11; ebioscience), Epcam (G8.8; biotrend) and CD31 (MEC13; BD Biosciences) were performed as described previously [25,27].

Mice. Embryos were dissected from timed pregnant CD1 mice at embryonic day E7–E7.5. The plug date was defined as embryonic day E0.5. Animal care and procedures were in compliance with local ethical committees.
Statistical analysis. Unless stated otherwise, data are presented as mean of at least three biologically independent experiments + standard error of the mean. qPCR data are presented as linearized Cq-values normalized to TBP (2^-ΔCq). To calculate fold increase of qPCR data, TBP-normalized Cq-values of +Dox conditions were normalized to -Dox (ΔΔCq) for each independent experiment. Interaction between the effects of Dox and Activin was tested using a two-way analysis of variance test.

For counting of cells, at least 1,000 cells were counted in three different fields, from at least three biologically independent experiments. All P-values were calculated using a two-way analysis of variance test with a post hoc Tukey test for multiple comparisons. *P<0.05; **P<0.01; ***P<0.001 in all figs.

Supplementary information is available at EMBO reports online (http://www.emboreports.org).

ACKNOWLEDGEMENTS
We thank G. Vassart for continuous support and interest, and members of the lab and IRIBHM for helpful discussions and advice. We thank M. vander Heyden, UMC Utrecht, for providing P19 cells. This work was funded by grants from the Belgian Queen Elizabeth Medical Foundation, the Action de Recherches Concertées Programs, the Interuniversity Attraction Poles Program, Belgian State, Federal Office for Scientific, Technical and Cultural Affairs, the Fondations Pierre Clerdent and Roger de Spoelberch (to P.V.), the Belgian FNRS and FRSM, the Welbio and Programme d’Excellence CIBLES of the Walloon Region (to P.V. and C.B.). C.B. is supported by the Fund Gaston Ithier, a starting grant of the European Research Council, and the EMBO Young Investigator Program. L.T. was supported by an EMBO Long Term Fellowship. P.V. is Research Director, C.B. Chercheur Qualifie, A.B. and L.T. Charge’s de Recherche, L.T. was supported by an EMBO Long Term Fellowship. P.V. is Research Director, C.B. Chercheur Qualifie, A.B. and L.T. Charge’s de Recherche, and J.v.d.A. Research Fellow of the FNRS.

CONFICT OF INTEREST
The authors declare that they have no conflict of interest.

REFERENCES

